Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 276 papers

Sulfite oxidation in Sinorhizobium meliloti.

  • Jeremy J Wilson‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

Sulfite-oxidizing enzymes (SOEs) are crucial for the metabolism of many cells and are particularly important in bacteria oxidizing inorganic or organic sulfur compounds. However, little is known about SOE diversity and metabolic roles. Sinorhizobium meliloti contains four candidate genes encoding SOEs of three different types, and in this work we have investigated the role of SOEs in S. meliloti and their possible link to the metabolism of the organosulfonate taurine. Low level SOE activity (approximately 1.4 U/mg) was present under all conditions tested while growth on taurine and thiosulfate induced high activities (5.5-8.8 U/mg) although S. meliloti cannot metabolize thiosulfate. Protein purification showed that although expression of two candidate genes matched SOE activity patterns, only a single group 2 SOE, SorT (SMc04049), is responsible for this activity. SorT is a heme-free, periplasmic homodimer (78 kDa) that has low homology to other bacterial SOEs. SorT has an apparent k(cat) of 343 s(-1) and high affinities for both sulfite (K(Mapp_pH8) 15.5 microM) and ferricyanide (K(Mapp_pH8) 3.44 microM), but not cytochrome c, suggesting a need for a high redox potential natural electron acceptor. K(Mapp_sulfite) was nearly invariant with pH which is in contrast to all other well characterized SOEs. SorT is part of an operon (SMc04049-04047) also containing a gene for a cytochrome c and an azurin, and these might be the natural electron acceptors for the enzyme. Phylogenetic analysis of SorT-related SOEs and enzymes of taurine degradation indicate that there is no link between the two processes.


Osmoregulated trehalose-derived oligosaccharides in Sinorhizobium meliloti.

  • Arnaud Brique‎ et al.
  • FEBS letters‎
  • 2010‎

Sinorhizobium meliloti is a soil bacterium accumulating glutamate, N-acetylglutaminyl glutamine amide and trehalose in hyperosmolarity. Besides these compatible solutes, we highlighted several compounds in S. meliloti Rm1021 wild-type strain. The purification and the structural characterization based on liquid chromatography evaporative light scattering detector, electrospray ionization high resolution mass spectrometry and nuclear magnetic resonance techniques showed they were four linear oligosaccharides composed of 3, 4, 5 and 6 glucose units all linked by alpha-(1-->2) linkages except a terminal alpha-(1<-->1) linkage. These oligosaccharides were cytoplasmic and were observed in several wild-type strains suggesting they were common features in S. meliloti strains grown in hyperosmolarity.


Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti.

  • Jun Ye‎ et al.
  • FEBS letters‎
  • 2007‎

Purified ArsH from Sinorhizobium meliloti exhibits NADPH:FMN-dependent reduction of molecular O2 to hydrogen peroxide and catalyzes reduction of azo dyes. The structure of ArsH was determined at 1.8A resolution. ArsH crystallizes with eight molecules in the asymmetric unit forming two tetramers. Each monomer has a core domain with a central five-stranded parallel beta-sheet and two monomers interact to form a classical flavodoxin-like dimer. The N- and C-terminal extensions of ArsH are involved in interactions between subunits and tetramer formation. The structure may provide insight in how ArsH participates in arsenic detoxification.


Highly Efficient CRISPR-Mediated Base Editing in Sinorhizobium meliloti.

  • Longxiang Wang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Rhizobia are widespread gram-negative soil bacteria and indispensable symbiotic partners of leguminous plants that facilitate the most highly efficient biological nitrogen fixation in nature. Although genetic studies in Sinorhizobium meliloti have advanced our understanding of symbiotic nitrogen fixation (SNF), the current methods used for genetic manipulations in Sinorhizobium meliloti are time-consuming and labor-intensive. In this study, we report the development of a few precise gene modification tools that utilize the CRISPR/Cas9 system and various deaminases. By fusing the Cas9 nickase to an adenine deaminase, we developed an adenine base editor (ABE) system that facilitated adenine-to-guanine transitions at one-nucleotide resolution without forming double-strand breaks (DSB). We also engineered a cytidine base editor (CBE) and a guanine base editor (GBE) that catalyze cytidine-to-thymine substitutions and cytidine-to-guanine transversions, respectively, by replacing adenine deaminase with cytidine deaminase and other auxiliary enzymes. All of these base editors are amenable to the assembly of multiple synthetic guide RNA (sgRNA) cassettes using Golden Gate Assembly to simultaneously achieve multigene mutations or disruptions. These CRISPR-mediated base editing tools will accelerate the functional genomics study and genome manipulation of rhizobia.


Characterization of HicAB toxin-antitoxin module of Sinorhizobium meliloti.

  • Manon Thomet‎ et al.
  • BMC microbiology‎
  • 2019‎

Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules.


Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti.

  • Marco Galardini‎ et al.
  • Genome biology and evolution‎
  • 2013‎

Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved "DNA backbones" were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution.


Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis.

  • Margarida Saramago‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Members of the ribonuclease (RNase) III family of enzymes are metal-dependent double-strand specific endoribonucleases. They are ubiquitously found and eukaryotic RNase III-like enzymes include Dicer and Drosha, involved in RNA processing and RNA interference. In this work, we have addressed the primary characterization of RNase III from the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. The S. meliloti rnc gene does encode an RNase III-like protein (SmRNase III), with recognizable catalytic and double-stranded RNA (dsRNA)-binding domains that clusters in a branch with its α-proteobacterial counterparts. Purified SmRNase III dimerizes, is active at neutral to alkaline pH and behaves as a strict metal cofactor-dependent double-strand endoribonuclease, with catalytic features distinguishable from those of the prototypical member of the family, the Escherichia coli ortholog (EcRNase III). SmRNase III prefers Mn2+ rather than Mg2+ as metal cofactor, cleaves the generic structured R1.1 substrate at a site atypical for RNase III cleavage, and requires higher cofactor concentrations and longer dsRNA substrates than EcRNase III for optimal activity. Furthermore, the ultraconserved E125 amino acid was shown to play a major role in the metal-dependent catalysis of SmRNase III. SmRNase III degrades endogenous RNA substrates of diverse biogenesis with different efficiency, and is involved in the maturation of the 23S rRNA. SmRNase III loss-of-function neither compromises viability nor alters morphology of S. meliloti cells, but influences growth, nodulation kinetics, the onset of nitrogen fixation and the overall symbiotic efficiency of this bacterium on the roots of its legume host, alfalfa, which ultimately affects plant growth. Our results support an impact of SmRNase III on nodulation and symbiotic nitrogen fixation in plants.


Most Sinorhizobium meliloti Extracytoplasmic Function Sigma Factors Control Accessory Functions.

  • Claus Lang‎ et al.
  • mSphere‎
  • 2018‎

Bacteria must sense alterations in their environment and respond with changes in function and/or structure in order to cope. Extracytoplasmic function sigma factors (ECF σs) modulate transcription in response to cellular and environmental signals. The symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti carries genes for 11 ECF-like σs (RpoE1 to -E10 and FecI). We hypothesized that some of these play a role in mediating the interaction between the bacterium and its plant symbiotic partner. The bacterium senses changes in its immediate environment as it establishes contact with the plant root, initiates invasion of the plant as the root nodule is formed, traverses several root cell layers, and enters plant cortical cells via endocytosis. We used genetics, transcriptomics, and functionality to characterize the entire S. meliloti cohort of ECF σs. We discovered new targets for individual σs, confirmed others by overexpressing individual ECF σs, and identified or confirmed putative promoter motifs for nine of them. We constructed precise deletions of each ECF σ gene and its demonstrated or putative anti-σ gene and also a strain in which all 11 ECF σ and anti-σ genes were deleted. This all-ECF σ deletion strain showed no major defects in free-living growth, in Biolog Phenotype MicroArray assays, or in response to multiple stresses. None of the ECF σs were required for symbiosis on the host plants Medicago sativa and Medicago truncatula: the strain deleted for all ECF σ and anti-σ genes was symbiotically normal.IMPORTANCE Fixed (reduced) soil nitrogen plays a critical role in soil fertility and successful food growth. Much soil fertility relies on symbiotic nitrogen fixation: the bacterial partner infects the host plant roots and reduces atmospheric dinitrogen in exchange for host metabolic fuel, a process that involves complex interactions between the partners mediated by changes in gene expression in each partner. Here we test the roles of a family of 11 extracytoplasmic function (ECF) gene regulatory proteins (sigma factors [σs]) that interact with RNA polymerase to determine if they play a significant role in establishing a nitrogen-fixing symbiosis or in responding to various stresses, including cell envelope stress. We discovered that symbiotic nitrogen fixation occurs even when all 11 of these regulatory genes are deleted, that most ECF sigma factors control accessory functions, and that none of the ECF sigma factors are required to survive envelope stress.


An Updated Perspective on Sinorhizobium meliloti Chemotaxis to Alfalfa Flavonoids.

  • K Karl Compton‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The symbiotic interaction between leguminous plants and their cognate rhizobia allows for the fixation of gaseous dinitrogen into bioavailable ammonia. The perception of host-derived flavonoids is a key initial step for the signaling events that must occur preceding the formation of the nitrogen-fixing organ. Past work investigating chemotaxis - the directed movement of bacteria through chemical gradients - of Bradyrhizobium japonicum, Rhizobium leguminosarum, and Rhizobium meliloti discovered chemotaxis to various organic compounds, but focused on chemotaxis to flavonoids because of their relevance to the symbiosis biochemistry. The current work sought to replicate and further examine Sinorhizobium (Ensifer) meliloti chemotaxis to the flavonoids previously thought to act as the principal attractant molecules prior to the initial signaling stage. Exudate from germinating alfalfa seedlings was analyzed for composition and quantities of different flavonoid compounds using mass spectrometry. The abundance of four prevalent flavonoids in germinating alfalfa seed exudates (SEs) was at a ratio of 200:5:5:1 for hyperoside, luteolin, luteolin-7-glucoside, and chrysoeriol. Using quantitative chemotaxis capillary assays, we did not detect chemotaxis of motile S. meliloti cells to these, and two other flavonoids identified in seed exudates. In support of these findings, the flavonoid fraction of seed exudates was found to be an insignificant attractant relative to the more hydrophilic fraction. Additionally, we observed that cosolvents commonly used to dissolve flavonoids confound the results. We propose that the role flavonoids play in S. meliloti chemotaxis is insignificant relative to other components released by alfalfa seeds.


The Nitrate Assimilatory Pathway in Sinorhizobium meliloti: Contribution to NO Production.

  • Bryan Ruiz‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

The interaction between rhizobia and their legume host plants culminates in the formation of specialized root organs called nodules in which differentiated endosymbiotic bacteria (bacteroids) fix atmospheric nitrogen to the benefit of the plant. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. It is recognized that both bacterial and plant partners of the Sinorhizobium meliloti-Medicago truncatula symbiosis are involved in NO synthesis in nodules. S. meliloti can also produce NO from nitrate when living as free cells in the soil. S. meliloti does not possess any NO synthase gene in its genome. Instead, the denitrification pathway is often described as the main driver of NO production with nitrate as substrate. This pathway includes the periplasmic nitrate reductase (Nap) which reduces nitrate into nitrite, and the nitrite reductase (Nir) which reduces nitrite into NO. However, additional genes encoding putative nitrate and nitrite reductases (called narB and nirB, respectively) have been identified in the S. meliloti genome. Here we examined the conditions where these genes are expressed, investigated their involvement in nitrate assimilation and NO synthesis in culture and their potential role in planta. We found that narB and nirB are expressed under aerobic conditions in absence of ammonium in the medium and most likely belong to the nitrate assimilatory pathway. Even though these genes are clearly expressed in the fixation zone of legume root nodule, they do not play a crucial role in symbiosis. Our results support the hypothesis that in S. meliloti, denitrification remains the main enzymatic way to produce NO while the assimilatory pathway involving NarB and NirB participates indirectly to NO synthesis by cooperating with the denitrification pathway.


Functional and topological analysis of phosphatidylcholine synthase from Sinorhizobium meliloti.

  • Rosa L Solís-Oviedo‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of eubacteria. It can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation pathway or the phosphatidylcholine synthase (Pcs) pathway. Pcs belongs to the CDP-alcohol phosphotransferase superfamily and synthesizes PC and CMP in one step from CDP-diacylglycerol and choline. In this study, we aligned sequences of characterized Pcs enzymes to identify conserved amino acid residues. Alanine scanning mutagenesis was performed on 55 of these conserved residues. The mutation of nine residues caused a drastic to complete loss (<20% of wild type activity) of Pcs activity. Six of these essential residues were subjected to further mutagenesis studies replacing them by amino acids with similar properties or size. A topological analysis of sinorhizobial Pcs showed the presence of eight transmembrane helices, with the C- and N-terminus located in the cytoplasm. The majority of the conserved residues is predicted to be either located within the cytoplasmic loops or on the cytoplasmic side of the membrane which can be expected for an enzyme using one membrane-associated and one soluble substrate.


Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome.

  • María Dolores Molina-Sánchez‎ et al.
  • Scientific reports‎
  • 2015‎

Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3'-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.


Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti.

  • Marco Galardini‎ et al.
  • BMC genomics‎
  • 2011‎

Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains.


Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines.

  • Thomas Roret‎ et al.
  • Bioscience reports‎
  • 2020‎

Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe-2S] cluster into heterodimers. A role in the maturation of iron-sulfur (Fe-S) proteins is also attributed to both proteins. In the present study, we have performed a structure-function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe-S cluster binding in BolA-Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.


Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.

  • Francesco Pini‎ et al.
  • PLoS genetics‎
  • 2015‎

In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable insight into how highly conserved genetic networks can evolve, possibly to fit the diverse lifestyles of different bacteria.


Choline sulfatase from Ensifer (Sinorhizobium) meliloti: Characterization of the unmodified enzyme.

  • Juan José Sánchez-Romero‎ et al.
  • Biochemistry and biophysics reports‎
  • 2015‎

Ensifer (Sinorhizobium) meliloti is a nitrogen-fixing α-proteobacterium able to biosynthesize the osmoprotectant glycine betaine from choline sulfate through a metabolic pathway that starts with the enzyme choline-O-sulfatase. This protein seems to be widely distributed in microorganisms and thought to play an important role in their sulfur metabolism. However, only crude extracts with choline sulfatase activity have been studied. In this work, Ensifer (Sinorhizobium) meliloti choline-O-sulfatase was obtained in a high degree of purity after expression in Escherichia coli. Gel filtration and dynamic light scattering experiments showed that the recombinant enzyme exists as a dimer in solution. Using calorimetry, its catalytic activity against its natural substrate, choline-O-sulfate, gave a k cat=2.7×10-1 s-1 and a K M=11.1 mM. For the synthetic substrates p-nitrophenyl sulfate and methylumbelliferyl sulfate, the k cat values were 3.5×10-2 s-1 and 4.3×10-2 s-1, with K M values of 75.8 and 11.8 mM respectively. The low catalytic activity of the recombinant sulfatase was due to the absence of the formylglycine post-translational modification in its active-site cysteine 54. Nevertheless, unmodified Ensifer (Sinorhizobium) meliloti choline-O-sulfatase is a multiple-turnover enzyme with remarkable catalytic efficiency.


Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020.

  • Mingmei Lu‎ et al.
  • Scientific reports‎
  • 2016‎

The Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown. We used five P1B-ATPases deletions by designating as ∆copA1b, ∆fixI1, ∆copA3, ∆zntA and ∆nia, respectively to investigate the role of P1B-ATPases in heavy metal resistance of S. meliloti. The ∆copA1b and ∆zntA mutants were sensitive to zinc (Zn), cadmium (Cd) and lead (Pb) in different degree, whereas the other mutants had no significant influence on the metal resistance. Moreover, the expression of zntA was induced by Zn, Cd and Pb whereas copA1b was induced by copper (Cu) and silver (Ag). This two deletions could led to the increased intracellular concentrations of Zn, Pb and Cd, but not of Cu. Complementation of ∆copA1b and ∆zntA mutants showed a restoration of tolerance to Zn, Cd and Pb to a certain extent. Taken together, the results suggest an important role of copA1b and zntA in Zn homeostasis and Cd and Pb detoxification in S. meliloti CCNWSX0020.


Lactic acid containing polymers produced in engineered Sinorhizobium meliloti and Pseudomonas putida.

  • Tam T Tran‎ et al.
  • PloS one‎
  • 2020‎

This study demonstrates that novel polymer production can be achieved by introducing pTAM, a broad-host-range plasmid expressing codon-optimized genes encoding Clostridium propionicum propionate CoA transferase (PctCp, Pct532) and a modified Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps6-19, PhaC1400), into phaC mutant strains of the native polymer producers Sinorhizobium meliloti and Pseudomonas putida. Both phenotypic analysis and gas chromatography analysis indicated the synthesis and accumulation of biopolymers in S. meliloti and P. putida strains. Expression in S. meliloti resulted in the production of PLA homopolymer up to 3.2% dried cell weight (DCW). The quaterpolymer P (3HB-co-LA-co-3HHx-co-3HO) was produced by expression in P. putida. The P. putida phaC mutant strain produced this type of polymer the most efficiently with polymer content of 42% DCW when cultured in defined media with the addition of sodium octanoate. This is the first report, to our knowledge, of the production of a range of different biopolymers using the same plasmid-based system in different backgrounds. In addition, it is the first time that the novel polymer (P(3HB-co-LA-co-3HHx-co-3HO)), has been reported being produced in bacteria.


Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.

  • Tao Liu‎ et al.
  • PloS one‎
  • 2015‎

Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.


Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011.

  • Claudio Valverde‎ et al.
  • BMC genomics‎
  • 2008‎

Small non-coding RNAs (sRNAs) have emerged as ubiquitous regulatory elements in bacteria and other life domains. However, few sRNAs have been identified outside several well-studied species of gamma-proteobacteria and thus relatively little is known about the role of RNA-mediated regulation in most other bacterial genera. Here we have conducted a computational prediction of putative sRNA genes in intergenic regions (IgRs) of the symbiotic alpha-proteobacterium S. meliloti 1021 and experimentally confirmed the expression of dozens of these candidate loci in the closely related strain S. meliloti 2011.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: