Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 634 papers

Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a.

  • Huan Nie‎ et al.
  • BMC genomics‎
  • 2006‎

Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401) and compared it with S. flexneri 2a (Sf301).


Evolutionary histories and antimicrobial resistance in Shigella flexneri and Shigella sonnei in Southeast Asia.

  • Hao Chung The‎ et al.
  • Communications biology‎
  • 2021‎

Conventional disease surveillance for shigellosis in developing country settings relies on serotyping and low-resolution molecular typing, which fails to contextualise the evolutionary history of the genus. Here, we interrogated a collection of 1,804 Shigella whole genome sequences from organisms isolated in four continental Southeast Asian countries (Thailand, Vietnam, Laos, and Cambodia) over three decades to characterise the evolution of both S. flexneri and S. sonnei. We show that S. sonnei and each major S. flexneri serotype are comprised of genetically diverse populations, the majority of which were likely introduced into Southeast Asia in the 1970s-1990s. Intranational and regional dissemination allowed widespread propagation of both species across the region. Our data indicate that the epidemiology of S. sonnei and the major S. flexneri serotypes were characterised by frequent clonal replacement events, coinciding with changing susceptibility patterns against contemporaneous antimicrobials. We conclude that adaptation to antimicrobial pressure was pivotal to the recent evolutionary trajectory of Shigella in Southeast Asia.


Development of Shigella conjugate vaccines targeting Shigella flexneri 2a and S. flexneri 3a using a simple platform-approach conjugation by squaric acid chemistry.

  • Meagan Kelly‎ et al.
  • Vaccine‎
  • 2023‎

There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.


Expression of Shigella flexneri ipaB Gene in Tobacco.

  • Mandana Ohadi‎ et al.
  • Avicenna journal of medical biotechnology‎
  • 2013‎

Shigellosis is a leading cause of diarrhea in many developing countries and although the disease can be controlled and managed with antibiotics, the constant emergence of resistant species requiring ever newer antibacterial drugs make development of an effective vaccine necessary. The bacteria are highly contagious and since immunity to Shigella is serotype-specific a multi-serotype vaccine is required for adequate protection. Proteins encoded by Shigella invasion plasmid, which are part of the Type Three Secretion System (TTSS) of this bacteria, are good candidate as vaccine targets since they are both immunogenic and conserved between different Shigella species. The advent of molecular farming, which is a low cost system, has opened up new venues for production of recombinant proteins. In view of the difficulties encountered in expressing IpaB in Escherichia coli (E. coli), the feasibility of the expression of this protein in tobacco has been investigated.


Synaptopodin is necessary for Shigella flexneri intercellular spread.

  • Jenna M Vickery‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

For many intracellular pathogens, their virulence depends on an ability to spread between cells of an epithelial layer. For intercellular spread to occur, these pathogens deform the plasma membrane into a protrusion structure that is engulfed by the neighboring cell. Although the polymerization of actin is essential for spread, how these pathogens manipulate the actin cytoskeleton in a manner that enables protrusion formation is still incompletely understood. Here, we identify the mammalian actin binding protein synaptopodin as required for efficient intercellular spread. Using a model cytosolic pathogen, Shigella flexneri , we show that synaptopodin contributes to organization of actin around bacteria and increases the length of the actin tail at the posterior pole of the bacteria. We show that synaptopodin presence enables protrusions to form and to resolve at a greater rate, indicating that greater stability of the actin tail enables the bacteria to push against the membrane with greater force. We demonstrate that synaptopodin recruitment around bacteria requires the bacterial protein IcsA, and we show that this recruitment is further enhanced in a type 3 secretion system dependent manner. These data establish synaptopodin as required for intracellular bacteria to reprogram the actin cytoskeleton in a manner that enables efficient protrusion formation and enhance our understanding of the cellular function of synaptopodin.


Extensively Drug-Resistant Shigella flexneri 2a, California, USA, 2022.

  • J R Caldera‎ et al.
  • Emerging infectious diseases‎
  • 2023‎

In Los Angeles, California, USA, persistent, refractory shigellosis was diagnosed in an immunocompetent man who has sex with men. Whole-genome sequencing augmented phenotypic antimicrobial susceptibility testing to comprehensively profile bacterial drug resistance and appropriately guide therapy and clear the infection.


(p)ppGpp is required for virulence of Shigella flexneri.

  • Grace Kago‎ et al.
  • Infection and immunity‎
  • 2024‎

Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.


Immunomodulatory Effects of Asiaticoside Against Shigella flexneri-Infected Macrophages.

  • Shalini Michael‎ et al.
  • Tropical life sciences research‎
  • 2021‎

Macrophages provide the first line of defense against Shigella flexneri infection in the gastrointestinal tract by inducing a variety of inflammatory and antimicrobial responses. Secondary metabolites of plants are used as drugs against infections that are resistant to common antibiotics. In this study, the innate effects of asiaticoside on the proinflammatory activity of mouse macrophages infected with S. flexneri were investigated. The viability of the infected mouse macrophages were examined using viability assay, while the pro-inflammatory cytokines productions were determined using the enzyme-linked immunosorbent assay (ELISA) for determination of IL-1β, IL-12 p40 and TNF-α levels. The production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) protein were determined using the Griess assay and western blot, respectively. Statistical analyses were performed using the Statistical Package of Social Sciences (SPSS) software, version 20. The data obtained from independent experiments (n = 3) were presented as the mean ± standard error of mean (SEM). The results showed that, asiaticoside stimulated the infected macrophages by stimulating increased production of TNF-α, IL-12 p40 and NO as well as increased expression of iNOS in a dose-dependent manner. In contrast the viability of the cells and the production of IL-1β and were reduced also in a dose-dependent manner when compared to untreated cells. These results indicate that asiaticoside has immunomodulatory effects on the innate immune function of infected macrophages, showing the potential use of this compound to reduce the clinical symptoms of the infections.


Drug resistant Shigella flexneri in & around Dibrugarh, north-east India.

  • Reema Nath‎ et al.
  • The Indian journal of medical research‎
  • 2013‎

Shigella flexneri is the most common species of Shigella causing diarrhoea and dysentery in Asia including India. Multidrug resistance in Shigella species has been reported worldwide and there is rising concern regarding development of fluoroquinolone resistance. This study was undertaken to find out the resistance pattern of Sh. flexneri, the commonest shigella isolated in Dibrugarh, north east India, including detection of fluoroquinolone resistance and extended spectrum beta lactamases.


Selection for Phage Resistance Reduces Virulence of Shigella flexneri.

  • Kaitlyn E Kortright‎ et al.
  • Applied and environmental microbiology‎
  • 2022‎

There is an increasing interest in phage therapy as an alternative to antibiotics for treating bacterial infections, especially using phages that select for evolutionary trade-offs between increased phage resistance and decreased fitness traits, such as virulence, in target bacteria. A vast repertoire of virulence factors allows the opportunistic bacterial pathogen Shigella flexneri to invade human gut epithelial cells, replicate intracellularly, and evade host immunity through intercellular spread. It has been previously shown that OmpA is necessary for the intercellular spread of S. flexneri. We hypothesized that a phage which uses OmpA as a receptor to infect S. flexneri should select for phage-resistant mutants with attenuated intercellular spread. Here, we show that phage A1-1 requires OmpA as a receptor and selects for reduced virulence in S. flexneri. We characterized five phage-resistant mutants by measuring phenotypic changes in various traits: cell-membrane permeability, total lipopolysaccharide (LPS), sensitivity to antibiotics, and susceptibility to other phages. The results separated the mutants into two groups: R1 and R2 phenotypically resembled ompA knockouts, whereas R3, R4, and R5 were similar to LPS-deficient strains. Whole-genome sequencing confirmed that R1 and R2 had mutations in ompA, while R3, R4, and R5 had mutations in the LPS inner-core biosynthesis genes gmhA and gmhC. Bacterial plaque assays confirmed that all the phage-resistant mutants were incapable of intercellular spread. We concluded that selection for S. flexneri resistance to phage A1-1 generally reduced virulence (i.e., intercellular spread), but this trade-off could be mediated by mutations either in ompA or in LPS-core genes that likely altered OmpA conformation. IMPORTANCE Shigella flexneri is a facultative intracellular pathogen of humans and a leading cause of bacillary dysentery. With few effective treatments and rising antibiotic resistance in these bacteria, there is increasing interest in alternatives to classical infection management of S. flexneri infections. Phage therapy poses an attractive alternative, particularly if a therapeutic phage can be found that results in an evolutionary trade-off between phage resistance and bacterial virulence. Here, we isolate a novel lytic phage from water collected in Cuatro Cienegas, Mexico, which uses the OmpA porin of S. flexneri as a receptor. We use phenotypic assays and genome sequencing to show that phage A1-1 selects for phage-resistant mutants which can be grouped into two categories: OmpA-deficient mutants and LPS-deficient mutants. Despite these underlying mechanistic differences, we confirmed that naturally occurring phage A1-1 selected for evolved phage resistance which coincided with impaired intercellular spread of S. flexneri in a eukaryotic infection model.


Capsaicin Inhibits Shigella flexneri Intracellular Growth by Inducing Autophagy.

  • Priyanka Basak‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Antibiotic treatment plays an essential role in preventing Shigella infection. However, incidences of global rise in antibiotic resistance create a major challenge to treat bacterial infection. In this context, there is an urgent need for newer approaches to reduce S. flexneri burden. This study largely focuses on the role of the herbal compound capsaicin (Caps) in inhibiting S. flexneri growth and evaluating the molecular mechanism behind bacterial clearance. Here, we show for the first time that Caps inhibits intracellular S. flexneri growth by inducing autophagy. Activation of autophagy by Caps is mediated through transcription factor TFEB, a master regulator of autophagosome biogenesis. Caps induced the nuclear localization of TFEB. Activation of TFEB further induces the gene transcription of autophagosomal genes. Our findings revealed that the inhibition of autophagy by silencing TFEB and Atg5 induces bacterial growth. Hence, Caps-induced autophagy is one of the key factors responsible for bacterial clearance. Moreover, Caps restricted the intracellular proliferation of S. flexneri-resistant strain. The efficacy of Caps in reducing S. flexneri growth was confirmed by an animal model. This study showed for the first time that S. flexneri infection can be inhibited by inducing autophagy. Overall observations suggest that Caps activates TFEB to induce autophagy and thereby combat S. flexneri infection.


Multidrug-resistant atypical variants of Shigella flexneri in China.

  • Shaofu Qiu‎ et al.
  • Emerging infectious diseases‎
  • 2013‎

We identified 3 atypical Shigella flexneri varieties in China, including 92 strains with multidrug resistance, distinct pulse types, and a novel sequence type. Atypical varieties were prevalent mainly in developed regions, and 1 variant has become the dominant Shigella spp. serotype in China. Improved surveillance will help guide the prevention and control of shigellosis.


Whole-Genome Sequencing for National Surveillance of Shigella flexneri.

  • Marie A Chattaway‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

National surveillance of Shigella flexneri ensures the rapid detection of outbreaks to facilitate public health investigation and intervention strategies. In this study, we used whole-genome sequencing (WGS) to type S. flexneri in order to detect linked cases and support epidemiological investigations. We prospectively analyzed 330 isolates of S. flexneri received at the Gastrointestinal Bacteria Reference Unit at Public Health England between August 2015 and January 2016. Traditional phenotypic and WGS sub-typing methods were compared. PCR was carried out on isolates exhibiting phenotypic/genotypic discrepancies with respect to serotype. Phylogenetic relationships between isolates were analyzed by WGS using single nucleotide polymorphism (SNP) typing to facilitate cluster detection. For 306/330 (93%) isolates there was concordance between serotype derived from the genome and phenotypic serology. Discrepant results between the phenotypic and genotypic tests were attributed to novel O-antigen synthesis/modification gene combinations or indels identified in O-antigen synthesis/modification genes rendering them dysfunctional. SNP typing identified 36 clusters of two isolates or more. WGS provided microbiological evidence of epidemiologically linked clusters and detected novel O-antigen synthesis/modification gene combinations associated with two outbreaks. WGS provided reliable and robust data for monitoring trends in the incidence of different serotypes over time. SNP typing can be used to facilitate outbreak investigations in real-time thereby informing surveillance strategies and providing the opportunities for implementing timely public health interventions.


Shigella flexneri Disruption of Cellular Tension Promotes Intercellular Spread.

  • Jeffrey K Duncan-Lowey‎ et al.
  • Cell reports‎
  • 2020‎

During infection, some bacterial pathogens invade the eukaryotic cytosol and spread between cells of an epithelial monolayer. Intercellular spread occurs when these pathogens push against the plasma membrane, forming protrusions that are engulfed by adjacent cells. Here, we show that IpaC, a Shigella flexneri type 3 secretion system protein, binds the host cell-adhesion protein β-catenin and facilitates efficient protrusion formation. S. flexneri producing a point mutant of IpaC that cannot interact with β-catenin is defective in protrusion formation and spread. Spread is restored by chemical reduction of intercellular tension or genetic depletion of β-catenin, and the magnitude of the protrusion defect correlates with membrane tension, indicating that IpaC reduces membrane tension, which facilitates protrusion formation. IpaC stabilizes adherens junctions and does not alter β-catenin localization at the membrane. Thus, Shigella, like other bacterial pathogens, reduces intercellular tension to efficiently spread between cells.


Fluoroquinolone resistance mechanisms of Shigella flexneri isolated in Bangladesh.

  • Ishrat J Azmi‎ et al.
  • PloS one‎
  • 2014‎

To investigate the prevalence and mechanisms of fluoroquinolone resistance in Shigella species isolated in Bangladesh and to compare with similar strains isolated in China.


Evaluating Shigella flexneri Pathogenesis in the Human Enteroid Model.

  • Sridevi Ranganathan‎ et al.
  • Infection and immunity‎
  • 2019‎

The enteric pathogen Shigella is one of the leading causes of moderate-to-severe diarrhea and death in young children in developing countries. Transformed cell lines and animal models have been widely used to study Shigella pathogenesis. In addition to altered physiology, transformed cell lines are composed of a single cell type that does not sufficiently represent the complex multicellular environment of the human colon. Most available animal models do not accurately mimic human disease. The human intestinal enteroid model, derived from LGR5+ stem cell-containing intestinal crypts from healthy subjects, represents a technological leap in human gastrointestinal system modeling and provides a more physiologically relevant system that includes multiple cell types and features of the human intestine. We established the utility of this model for studying basic aspects of Shigella pathogenesis and host responses. In this study, we show that Shigellaflexneri is capable of infecting and replicating intracellularly in human enteroids derived from different segments of the intestine. Apical invasion by S. flexneri is very limited but increases ∼10-fold when enteroids are differentiated to include M cells. Invasion via the basolateral surface was at least 2-log10 units more efficient than apical infection. Increased secretion of interleukin-8 and higher expression levels of the mucin glycoprotein Muc2 were observed in the enteroids following S. flexneri infection. The human enteroid model promises to bridge some of the gaps between traditional cell culture, animal models, and human infection.


Shigella-Specific Immune Profiles Induced after Parenteral Immunization or Oral Challenge with Either Shigella flexneri 2a or Shigella sonnei.

  • Kristen A Clarkson‎ et al.
  • mSphere‎
  • 2021‎

Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.


Resistance characteristics of CTX-M type Shigella flexneri in China.

  • Fengzhi Bian‎ et al.
  • Bioscience reports‎
  • 2019‎

The present study was to identify the drug resistance, resistance mechanism and the extended-spectrum β-lactamase (ESBLs) genotypes of Shigella flexneri (S. flexneri) in Jinan. Susceptibility tests were performed by MIC-determination. The genotypes of β-lactamase were identified using PCR and DNA sequencing. The resistance transfer ability of the ESBL-producing strains was examined by conjugation tests. A total of 105 S. flexneri isolates were collected, and 34 (32.4%) were ESBL-producing isolates. All ESBL-producing isolates were susceptible to cefoxitin and imipenem, and 35.3% isolates were resistant to ciprofloxacin. ESBL-producing isolates showed high level resistant to ampicillin (100%), cefotaxime (100%), tetracycline (100%), chloramphenicol (100%), trimethoprim/sulfamethoxazole (100%), ceftazidime (73.5%) and cefepime (73.5%). Three types of β-lactamase genes (blaTEM, blaOXA and blaCTX-M) were identified in all ESBL-producing isolates, and the genotypes were confirmed as blaTEM-1 (23/34), blaOXA-30 (34/34), blaCTX-M-14 (9/34) and blaCTX-M-15 (25/34) by sequencing. In conclusion, the Shigella strains isolated in Jinan are cross-resistant and multi-drug resistant. The main genotypes of ESBLs are CTX-M-14 and CTX-M-15.


Characterization of Shigella flexneri in northern Vietnam in 2012-2016.

  • Dong Tu Nguyen‎ et al.
  • Access microbiology‎
  • 2023‎

Shigellosis remains a considerable public health concern in developing countries. Shigella flexneri and Shigella sonnei are prevalent worldwide and S. sonnei has been replacing S. flexneri .


The evolutionary history of Shigella flexneri serotype 6 in Asia.

  • Si-Nguyen T Mai‎ et al.
  • Microbial genomics‎
  • 2021‎

Shigella flexneri serotype 6 is an understudied cause of diarrhoeal diseases in developing countries, and has been proposed as one of the major targets for vaccine development against shigellosis. Despite being named as S. flexneri, Shigella flexneri serotype 6 is phylogenetically distinct from other S. flexneri serotypes and more closely related to S. boydii. This unique phylogenetic relationship and its low sampling frequency have hampered genomic research on this pathogen. Herein, by utilizing whole genome sequencing (WGS) and analyses of Shigella flexneri serotype 6 collected from epidemiological studies (1987-2013) in four Asian countries, we revealed its population structure and evolutionary history in the region. Phylogenetic analyses supported the delineation of Asian Shigella flexneri serotype 6 into two phylogenetic groups (PG-1 and -2). Notably, temporal phylogenetic approaches showed that extant Asian S. flexneri serotype 6 could be traced back to an inferred common ancestor arising in the 18th century. The dominant lineage PG-1 likely emerged in the 1970s, which coincided with the times to most recent common ancestors (tMRCAs) inferred from other major Southeast Asian S. flexneri serotypes. Similar to other S. flexneri serotypes in the same period in Asia, genomic analyses showed that resistance to first-generation antimicrobials was widespread, while resistance to more recent first-line antimicrobials was rare. These data also showed a number of gene inactivation and gene loss events, particularly on genes related to metabolism and synthesis of cellular appendages, emphasizing the continuing role of reductive evolution in the adaptation of the pathogen to an intracellular lifestyle. Together, our findings reveal insights into the genomic evolution of the understudied Shigella flexneri serotype 6, providing a new piece in the puzzle of Shigella epidemiology and evolution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: