Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,424 papers

Sex determination and differentiation.

  • M McKeown‎
  • Developmental genetics‎
  • 1994‎

No abstract available


Characterization of sex determination and sex differentiation genes in Latimeria.

  • Mariko Forconi‎ et al.
  • PloS one‎
  • 2013‎

Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.


Sex hormone-binding globulin b expression in the rainbow trout ovary prior to sex differentiation.

  • Claudio Pérez‎ et al.
  • General and comparative endocrinology‎
  • 2018‎

Salmonids have two sex hormone-binding globulin (Shbg) paralogs. Shbga is mainly expressed in the liver, while Shbgb is secreted by the granulosa cells of the rainbow trout ovary. Coexpression of shbgb and the gonadal aromatase cyp19a1a mRNAs been observed in granulosa cells, suggesting a physiological coordination between Shbgb expression and estrogen synthesis. As estrogens are essential for female sex determination in the fish ovary, we propose that Shbgb participates in early ovarian differentiation, either by binding with estrogen or through another mechanism that remains to be discovered. To elucidate this potential role, monosex populations of female trout were studied during the molecular ovarian differentiation period (28-56 dpf). shbgb mRNA expression was measured using qPCR and compared with expression of genes for other ovarian markers (cyp19a1a, foxl2, follistatin, and estrogen receptors). shbgb transcript expression was detected during the final stages of embryonic development (21-26 dpf) and during molecular ovarian differentiation (32-52 dpf) after hatching (which occurred at 31 dpf). In situ hybridization localized shbgb transcription to the undifferentiated ovary at 42 dpf, and shbgb and cyp19a1a mRNA showed similar expression patterns. These results suggest that Shbgb is involved in early ovarian differentiation, supporting an important role for the salmonid shbgb gene in sex determination.


Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes.

  • Michail Rovatsos‎ et al.
  • Scientific reports‎
  • 2015‎

Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait.


10,000 social brains: Sex differentiation in human brain anatomy.

  • Hannah Kiesow‎ et al.
  • Science advances‎
  • 2020‎

In human and nonhuman primates, sex differences typically explain much interindividual variability. Male and female behaviors may have played unique roles in the likely coevolution of increasing brain volume and more complex social dynamics. To explore possible divergence in social brain morphology between men and women living in different social environments, we applied probabilistic generative modeling to ~10,000 UK Biobank participants. We observed strong volume effects especially in the limbic system but also in regions of the sensory, intermediate, and higher association networks. Sex-specific brain volume effects in the limbic system were linked to the frequency and intensity of social contact, such as indexed by loneliness, household size, and social support. Across the processing hierarchy of neural networks, different conditions for social interplay may resonate in and be influenced by brain anatomy in sex-dependent ways.


Sex biased expression of hormone related genes at early stage of sex differentiation in papaya flowers.

  • Juan Liu‎ et al.
  • Horticulture research‎
  • 2021‎

Sex types of papaya are controlled by a pair of nascent sex chromosomes, but molecular genetic mechanisms of sex determination and sex differentiation in papaya are still unclear. We performed comparative analysis of transcriptomic profiles of male and female floral buds at the early development stage before the initiation of reproductive organ primordia at which there is no morphological difference between male and female flowers. A total of 1734 differentially expressed genes (DEGs) were identified, of which 923 showed female-biased expression and 811 showed male-biased expression. Functional annotation revealed that genes related to plant hormone biosynthesis and signaling pathways, especially in abscisic acid and auxin pathways, were overrepresented in the DEGs. Transcription factor binding motifs, such as MYB2, GAMYB, and AP2/EREBP, were enriched in the promoters of the hormone-related DEGs, and transcription factors with those motifs also exhibited differential expression between sex types. Among these DEGs, we also identified 11 genes in the non-recombining region of the papaya sex chromosomes and 9 genes involved in stamen and carpel development. Our results suggested that sex differentiation in papaya may be regulated by multiple layers of regulation and coordination and involved transcriptional, epigenetic, and phytohormone regulation. Hormones, especially ABA and auxin, transcription factors, and genes in the non-recombination region of the sex chromosome could be involved in this process. Our findings may facilitate the elucidation of signal transduction and gene interaction in sex differentiation of unisexual flowers in papaya.


Molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with XX/XY sex determination.

  • Edward S Hayman‎ et al.
  • Gene‎
  • 2021‎

Phenotypic sex of an organism is determined by molecular changes in the gonads, so-called molecular sex differentiation, which should precede the rise of cellular or anatomical sex-distinguishing features. This study characterized molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with established XX/XY genotypic sex determination. Next generation sequencing was conducted on sablefish ovarian and testicular mRNAs to obtain sequences for transcripts associated with vertebrate sex determination and differentiation and early reproductive development. Gene-specific PCRs were developed to determine the distribution and ontogenetic gonadal expression of transcription, growth, steroidogenic and germline factors, as well as gonadotropin and steroid receptors. Molecular changes associated with sex differentiation were first apparent in both XY- and XX-genotype sablefish at ~ 60 mm in body length and prior to histological signs of sex differentiation. The earliest and most robust markers of testicular differentiation were gsdf, amh, dmrt1, cyp11b, star, sox9a, and fshr. Markedly elevated mRNA levels of several steroidogenesis-related genes and ar2 in differentiating testes suggested that androgens play a role in sablefish testicular differentiation. The earliest markers of ovarian differentiation were cyp19a1a, lhcgr, foxl2, nr0b1, and igf3. Other transcripts such as figla, zp3, and pou5f3 were expressed predominantly in XX-genotype fish and significantly increased with the first appearance and subsequent development of primary oocytes. This study provides valuable insight to the developmental sequence of events associated with gonadal sex differentiation in marine teleosts with XX/XY sex determination. It also implicates particular genes in processes of male and female development and establishes robust molecular markers for phenotypic sex in sablefish, useful for ongoing work related to sex control and reproductive sterilization.


Overexpression of Anti-Müllerian Hormone Disrupts Gonadal Sex Differentiation, Blocks Sex Hormone Synthesis, and Supports Cell Autonomous Sex Development in the Chicken.

  • Luke S Lambeth‎ et al.
  • Endocrinology‎
  • 2016‎

The primary role of Anti-Müllerian hormone (AMH) during mammalian development is the regression of Müllerian ducts in males. This highly conserved function is retained in birds and is supported by the high levels of AMH expression in developing testes. Mammalian AMH expression is regulated by a combination of transcription factors, the most important being Sry-type high-mobility-group box transcription factor-9 (SOX9). In the chicken embryo, however, AMH mRNA expression precedes that of SOX9, leading to the view that AMH may play a more central role in avian testicular development. To define its role in chicken gonadal development, AMH was overexpressed using the RCASBP viral vector. AMH caused the gonads of both sexes to develop as small and undeveloped structures at both embryonic and adult stages. Molecular analysis revealed that although female gonads developed testis-like cords, gonads lacked Sertoli cells and were incapable of steroidogenesis. A similar gonadal phenotype was also observed in males, with a complete loss of both Sertoli cells, disrupted SOX9 expression and gonadal steroidogenesis. At sexual maturity both sexes showed a female external phenotype but retained sexually dimorphic body weights that matched their genetic sexes. These data suggest that AMH does not operate as an early testis activator in the chicken but can affect downstream events, such as sex steroid hormone production. In addition, this study provides a unique opportunity to assess chicken sexual development in an environment of sex hormone deficiency, demonstrating the importance of both hormonal signaling and direct cell autonomous factors for somatic sex identity in birds.


Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation.

  • Qiaowei Pan‎ et al.
  • PLoS genetics‎
  • 2019‎

Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade.


Sex determination and differentiation in invertebrates: Drosophila and Caenorhabditis elegans.

  • M McKeown‎ et al.
  • Current opinion in cell biology‎
  • 1992‎

Sex determination in flies and worms is controlled by cascades beginning with the X chromosome: autosome ratio and terminating in transcription factors. We are now gaining an understanding of the molecular mechanisms governing the largely post-transcriptional regulation of the intermediate steps in these cascades.


Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).

  • Corey L Campbell‎ et al.
  • BMC genomics‎
  • 2017‎

Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings.


Expression patterns of sex differentiation-related genes during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus.

  • Ryo Horiguchi‎ et al.
  • General and comparative endocrinology‎
  • 2018‎

The three-spot wrasse, Halichoeres trimaculatus, can change sex from female to male (i.e. protogyny) due to sharp decrease in endogenous estrogen. During the sex change, ovarian tissue degenerates and testicular tissue arises newly. Finally, ovarian tissue disappears completely and replaces into mature testis. In order to predict the molecular mechanisms controlling the processes of sex change, we investigated the expression patterns of four genes (rspo1, figla, sox9b and amh), which have been thought to be associated with ovarian/testicular differentiation in vertebrates. Expression levels of rspo1 and figla, which play important roles for ovarian differentiation in vertebrates, were stable until the middle stage of the sex change, and subsequently down-regulated. Therefore, it was indicated that decrease in rspo1 and figla could result from ovarian degeneration. On the other hand, basis on the expression pattern, it was indicated that sox9b and amh, which are involved in testicular differentiation in vertebrates, were implicated in testicular formation and spermatogenesis during the sex change as well. The present results could be fundamental information for investigating the relationship between these factors and E2 depletion, which is crucial trigger for sex change.


Differential expression of P450 aromatase during gonadal sex differentiation and sex reversal of the newt Pleurodeles waltl.

  • S Kuntz‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2003‎

A better understanding of vertebrate sexual differentiation could be provided by a study of models in which genetic sex determination (GSD) of gonads can be reversed by temperature. In the newt Pleurodeles waltl, a P450 aromatase cDNA was isolated from adult gonads, and the nucleotide or deduced amino acid sequences showed a high level of identity with various vertebrate species. In adults, aromatase expression was found in gonads and brain. In developing gonads, the expression was found to fit with the thermo-sensitive period (TSP) and was detected in both ZZ and ZW larvae, as well as in ZW submitted during the whole TSP to a masculinizing temperature. In the latter individuals, in situ hybridization and semi quantitative RT-PCR showed that, at the end of TSP, aromatase expression was at the same level than in normal ZZ larvae and was significantly lower than in normal ZW ones. Furthermore, temperature-induced down regulation did not occur when heating was performed at the end of TSP. Our results confirm the importance of aromatase regulation in female versus male differentiation and demonstrate that a down regulation of aromatase expression is involved in the process of sex reversal.


Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish.

  • Ke Feng‎ et al.
  • Endocrinology‎
  • 2020‎

Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.


Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes.

  • Vaihiti Teaniniuraitemoana‎ et al.
  • BMC genomics‎
  • 2014‎

Black pearl farming is based on culture of the blacklip pearl oyster Pinctada margaritifera (Mollusca, lophotrochozoa), a protandrous hermaphrodite species. At first maturation, all individuals are males. The female sex appears progressively from two years old, which represents a limitation for broodstock conditioning for aquaculture production. In marine mollusks displaying hermaphroditic features, data on sexual determinism and differentiation, including the molecular sex determining cascade, are scarce. To increase genomic resources and identify the molecular mechanisms whereby gene expression may act in the sexual dimorphism of P. margaritifera, we performed gonad transcriptome analysis.


ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken.

  • Xiuan Zhang‎ et al.
  • Epigenetics & chromatin‎
  • 2023‎

Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibitors, which result in chicken sex reversal and infertility. However, the molecular mechanisms underlying sex differentiation and infertility in chicken sex reversal remain unclear. Therefore, we established a sex-reversed chicken flock by injecting an aromatase inhibitor, fadrozole, and constructed relatively high-resolution profiles of the gene expression and chromatin accessibility of embryonic gonads.


Progressive recombination suppression and differentiation in recently evolved neo-sex chromosomes.

  • Heini M Natri‎ et al.
  • Molecular biology and evolution‎
  • 2013‎

Recombination suppression leads to the structural and functional differentiation of sex chromosomes and is thus a crucial step in the process of sex chromosome evolution. Despite extensive theoretical work, the exact processes and mechanisms of recombination suppression and differentiation are not well understood. In threespine sticklebacks (Gasterosteus aculeatus), a different sex chromosome system has recently evolved by a fusion between the Y chromosome and an autosome in the Japan Sea lineage, which diverged from the ancestor of other lineages approximately 2 Ma. We investigated the evolutionary dynamics and differentiation processes of sex chromosomes based on comparative analyses of these divergent lineages using 63 microsatellite loci. Both chromosome-wide differentiation patterns and phylogenetic inferences with X and Y alleles indicated that the ancestral sex chromosomes were extensively differentiated before the divergence of these lineages. In contrast, genetic differentiation appeared to have proceeded only in a small region of the neo-sex chromosomes. The recombination maps constructed for the Japan Sea lineage indicated that recombination has been suppressed or reduced over a large region spanning the ancestral and neo-sex chromosomes. Chromosomal regions exhibiting genetic differentiation and suppressed or reduced recombination were detected continuously and sequentially in the neo-sex chromosomes, suggesting that differentiation has gradually spread from the fusion point following the extension of recombination suppression. Our study illustrates an ongoing process of sex chromosome differentiation, providing empirical support for the theoretical model postulating that recombination suppression and differentiation proceed in a gradual manner in the very early stage of sex chromosome evolution.


Differential gene expression among three sex types reveals a MALE STERILITY 1 (CpMS1) for sex differentiation in papaya.

  • Dessireé Zerpa-Catanho‎ et al.
  • BMC plant biology‎
  • 2019‎

Carica papaya is a trioecious plant species with a genetic sex-determination system defined by sex chromosomes. Under unfavorable environmental conditions male and hermaphrodite exhibit sex-reversal. Previous genomic research revealed few candidate genes for sex differentiation in this species. Nevertheless, more analysis is still needed to identify the mechanism responsible for sex flower organ development in papaya.


A retroposon-based view on the temporal differentiation of sex chromosomes.

  • Alexander Suh‎
  • Mobile genetic elements‎
  • 2012‎

Retroposon presence/absence patterns in orthologous genomic loci are known to be strong and almost homoplasy-free phylogenetic markers of common ancestry. This is evidenced by the comprehensive reconstruction of various species trees of vertebrate lineages in recent years, as well as the inference of the evolution of genes via retroposon-based gene trees of paralogous genes. Recently, it has been shown that retroposon markers are also suitable for the inference of differentiation events of gametologous genes, i.e., homologous genes on opposite sex chromosomes. This is because sex chromosomes evolved via stepwise cessation of recombination, making the presence or absence of a particular retroposon insertion among the two different gametologs in more or less closely related species a clear-cut indicator of the timing of differentiation events. Here, I examine the advantages and current limitations of this novel perspective for understanding avian sex chromosome evolution, compare the retroposon-based and sequence-based insights into gametolog differentiation and show that retroposons promise to be equally applicable to other sex chromosomal systems, such as the human X and Y chromosomes.


Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya.

  • Ping Zhou‎ et al.
  • Horticulture research‎
  • 2022‎

Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear. Papaya has three sex types, which is genetically determined and epigenetically regulated, and was chosen as a model to study sex differentiation. Bisulfite sequencing of genomic DNA extracted from early-stage flowers revealed sex-specific genomic methylation landscapes and seasonally methylome reprogramming processes in dioecious and gynodioecious papaya grown in spring and summer. Extensive methylation of sex-determining region (SDR) was the distinguishing epigenetic characteristics of nascent XY sex chromosomes in papaya. Seasonal methylome reprogramming of early-stage flowers in both dioecy and gynodioecy systems were detected, resulting from transcriptional expression pattern alterations of methylation-modification-related and chromatin-remodeling-related genes, particularly from those genes involved in active demethylation. Genes involved in phytohormone signal transduction pathway in male flowers have played an important role in the formation of male-specific characteristics. These findings enhanced the understanding of the genetic and epigenetic contributions to sex differentiation and the complexity of sex chromosome evolution in trioecious plants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: