Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 560 papers

Pathogenicity of Serratia marcescens Strains in Honey Bees.

  • Kasie Raymann‎ et al.
  • mBio‎
  • 2018‎

Although few honey bee diseases are known to be caused by bacteria, pathogens of adult worker bees may be underrecognized due to social immunity mechanisms. Specifically, infected adult bees typically abandon the hive or are removed by guards. Serratia marcescens, an opportunistic pathogen of many plants and animals, is often present at low abundance in the guts of honey bee workers and has recently been isolated from Varroa mites and from the hemolymph of dead and dying honey bees. However, the severity and prevalence of S. marcescens pathogenicity in honey bees have not been fully investigated. Here we characterized three S. marcescens strains isolated from the guts of honey bees and one previously isolated from hemolymph. In vivo tests confirmed that S. marcescens is pathogenic in workers. All strains caused mortality when a few cells were injected into the hemocoel, and the gut-isolated strains caused mortality when administered orally. In vitro assays and comparative genomics identified possible mechanisms of virulence of gut-associated strains. Expression of antimicrobial peptide and phenoloxidase genes was not elevated following infection, suggesting that these S. marcescens strains derived from honey bees can evade the immune response in their hosts. Finally, surveys from four locations in the United States indicated the presence of S. marcescens in the guts of over 60% of the worker bees evaluated. Taken together, these results suggest that S. marcescens is a widespread opportunistic pathogen of adult honey bees and that it may be highly virulent under some conditions such as perturbation of the normal gut microbiota or the presence of Varroa mites that puncture the integument, thereby enabling entry of bacterial cells.IMPORTANCE Recently, it has become apparent that multiple factors are responsible for honey bee decline, including climate change, pests and pathogens, pesticides, and loss of foraging habitat. Of the large number of pathogens known to infect honey bees, very few are bacteria. Because adult workers abandon hives when diseased, many of their pathogens may go unnoticed. Here we characterized the virulence of Serratia marcescens strains isolated from honey bee guts and hemolymph. Our results indicate that S. marcescens, an opportunistic pathogen of many plants and animals, including humans, is a virulent opportunistic pathogen of honey bees, which could contribute to bee decline. Aside from the implications for honey bee health, the discovery of pathogenic S. marcescens strains in honey bees presents an opportunity to better understand how opportunistic pathogens infect and invade hosts.


Complete Genome Sequence of Serratia marcescens Phage MTx.

  • Kristin Graham‎ et al.
  • Microbiology resource announcements‎
  • 2019‎

Serratia marcescens is a nosocomial pathogen that has evolved resistance to multiple antibiotics. Here, we present the genome sequence of myophage MTx that infects S. marcescens MTx encodes 103 proteins, with 26 being assigned a predicted function or superfamily classification, and it has little similarity with other phages at the nucleotide level.


Genome Sequence of Serratia marcescens Phage BF.

  • Eoghan Casey‎ et al.
  • Genome announcements‎
  • 2017‎

Phages infecting Serratia marcescens, a common causative agent of nosocomial infections, have potential therapeutic applications. Here, we report the complete genome of the novel S. marcescens phage BF, representing the third-largest phage genome sequenced to date.


Complete Genome Sequence of Serratia marcescens Myophage Moabite.

  • Lyndsey Price‎ et al.
  • Microbiology resource announcements‎
  • 2019‎

Serratia marcescens is a Gram-negative nosocomial pathogen causing various hospital-acquired infections. Here, we describe the complete genome sequence of S. marcescens myophage Moabite. The genome of Moabite is 273,933 bp long, with 337 predicted coding sequences and two tRNA genes, and it shares its highest amino acid identity with Serratia phage 2050HW.


Complete Genome Sequence of Serratia marcescens Siphophage Scapp.

  • Brian T Koehler‎ et al.
  • Microbiology resource announcements‎
  • 2019‎

Serratia marcescens is an opportunistic pathogen that typically infects the respiratory and urinary tract, with the majority of cases being hospital acquired. The study of S. marcescens phages may help control drug-resistant S. marcescens strains. In this study, we announce the complete genome sequence and the features of S. marcescens siphophage Scapp.


Complete Genome Sequence of Serratia marcescens Myophage MyoSmar.

  • Savannah Cooper‎ et al.
  • Microbiology resource announcements‎
  • 2019‎

Serratia marcescens is an opportunistic pathogen that causes respiratory, urinary, and digestive tract infections in humans. Here, we describe the annotation of Serratia marcescens myophage MyoSmar. The 68,745-bp genome encodes 105 predicted proteins and is most similar to the genomes of Pseudomonas PB1-like viruses.


Defining chaperone-usher fimbriae repertoire in Serratia marcescens.

  • Martín A González-Montalvo‎ et al.
  • Microbial pathogenesis‎
  • 2021‎

Chaperone-usher (CU) fimbriae are surface organelles particularly prevalent among the Enterobacteriaceae. Mainly associated to their adhesive properties, CU fimbriae play key roles in biofilm formation and host cell interactions. Little is known about the fimbriome composition of the opportunistic human pathogen Serratia marcescens. Here, by using a search based on consensus fimbrial usher protein (FUP) sequences, we identified 421 FUPs across 39 S. marcescens genomes. Further analysis of the FUP-containing loci allowed us to classify them into 20 conserved CU operons, 6 of which form the S. marcescens core CU fimbriome. A new systematic nomenclature is proposed according to FUP sequence phylogeny. We also established an in vivo transcriptional assay comparing CU promoter expression between an environmental and a clinical isolate of S. marcescens, which revealed that promoters from 3 core CU operons (referred as fgov, fpo, and fps) are predominantly expressed in the two strains and might represent key core adhesion appendages contributing to S. marcescens pathogenesis.


Genomic Analysis of the Serratia marcescens Bacteriophage BUCT660.

  • Yahao Li‎ et al.
  • Microbiology resource announcements‎
  • 2022‎

Here, we report the complete genome sequence of bacteriophage BUCT660, which comprises a linear double-stranded DNA (dsDNA) genome of 272,720 bp and a G+C content of 47%. BUCT660 contains 316 open reading frames and 2 tRNA-encoding genes. The results of transmission electron microscopy (TEM) indicate that BUCT660 is a member of the family Caudooviricetes.


Soft contact lens keratitis associated with Serratia marcescens.

  • P A Parment‎ et al.
  • Acta ophthalmologica‎
  • 1981‎

No abstract available


Complete Genome Sequence of Serratia marcescens Podophage Pila.

  • Loraine Melbern‎ et al.
  • Microbiology resource announcements‎
  • 2020‎

Multidrug-resistant Serratia marcescens strains cause serious nosocomial infections in humans. Here, we present the annotated genome sequence of S. marcescens podophage Pila. Similar to its closest relative, Enterobacteria phage T7, Pila has a 38,678-bp genome, predicted to encode 51 protein-coding genes, and contains 148-bp direct terminal repeats.


Complete Genome Sequence of Serratia marcescens Siphophage Slocum.

  • Jason Snowden‎ et al.
  • Microbiology resource announcements‎
  • 2020‎

Serratia marcescens is a ubiquitous Gram-negative opportunistic pathogen. This announcement describes the isolation and genome annotation of S. marcescens T5-like siphophage Slocum. Terminal repeats, 170 protein-coding genes, and 23 tRNAs were predicted in the 112,436-bp Slocum genome.


Complete Genome Sequence of Serratia marcescens Podophage Parlo.

  • Ryan Bockoven‎ et al.
  • Microbiology resource announcements‎
  • 2019‎

Serratia marcescens is an opportunistic human pathogen with multiple resistance mechanisms that infects hospitalized patients. Here, we report the full genome sequence of S. marcescens podophage Parlo. Parlo is most similar to Erwinia phage PEp14 and encodes a 3,764-residue protein assumed to be a homolog of DarB, an antirestriction protein.


Xylitol Inhibits Growth and Blocks Virulence in Serratia marcescens.

  • Ahdab N Khayyat‎ et al.
  • Microorganisms‎
  • 2021‎

Serratia marcescens is an opportunistic nosocomial pathogen and causes wound and burn infections. It shows high resistance to antibiotics and its pathogenicity is mediated by an arsenal of virulence factors. Another therapeutic option to such infections is targeting quorum sensing (QS), which controls the expression of different S. marcescens virulence factors. Prevention of QS can deprive S. marcescens from its bacterial virulence without applying stress on the bacterial growth and facilitates the eradication of the bacteria by immunity. The objective of the current study is to explore the antimicrobial and antivirulence activities of xylitol against S. marcescens. Xylitol could inhibit the growth of S. marcescens. Sub-inhibitory concentrations of xylitol could inhibit biofilm formation, reduce prodigiosin production, and completely block protease activity. Moreover, xylitol decreased swimming motility, swarming motility and increased the sensitivity to hydrogen peroxide. The expression of rsmA, pigP, flhC, flhD fimA, fimC, shlA bsmB, and rssB genes that regulate virulence factor production was significantly downregulated by xylitol. In silico study showed that xylitol could bind with the SmaR receptor by hydrophobic interaction and hydrogen bonding, and interfere with the binding of the natural ligand with SmaR receptor. An in vivo mice survival test confirmed the ability of xylitol to protect mice against the virulence of S. marcescens. In conclusion, xylitol is a growth and virulence inhibitor in S. marcescens and can be employed for the treatment of S. marcescens wound and burn infections.


Antibiofilm and Antivirulence Properties of Indoles Against Serratia marcescens.

  • Sivasamy Sethupathy‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Indole and its derivatives have been shown to interfere with the quorum sensing (QS) systems of a wide range of bacterial pathogens. While indole has been previously shown to inhibit QS in Serratia marcescens, the effects of various indole derivatives on QS, biofilm formation, and virulence of S. marcescens remain unexplored. Hence, in the present study, we investigated the effects of 51 indole derivatives on S. marcescens biofilm formation, QS, and virulence factor production. The results obtained revealed that several indole derivatives (3-indoleacetonitrile, 5-fluoroindole, 6-fluoroindole, 7-fluoroindole, 7-methylindole, 7-nitroindole, 5-iodoindole, 5-fluoro-2-methylindole, 2-methylindole-3-carboxaldehyde, and 5-methylindole) dose-dependently interfered with quorum sensing (QS) and suppressed prodigiosin production, biofilm formation, swimming motility, and swarming motility. Further assays showed 6-fluoroindole and 7-methylindole suppressed fimbria-mediated yeast agglutination, extracellular polymeric substance production, and secretions of virulence factors (e.g., proteases and lipases). QS assays on Chromobacterium violaceum CV026 confirmed that indole derivatives interfered with QS. The current results demonstrate the antibiofilm and antivirulence properties of indole derivatives and their potentials in applications targeting S. marcescens virulence.


Serratia marcescens internalization and replication in human bladder epithelial cells.

  • Ralf Hertle‎ et al.
  • BMC infectious diseases‎
  • 2004‎

Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains.


Serratamolide is a hemolytic factor produced by Serratia marcescens.

  • Robert M Q Shanks‎ et al.
  • PloS one‎
  • 2012‎

Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use.


Evaluation of Serratia marcescens Adherence to Contact Lens Materials.

  • Reed Pifer‎ et al.
  • Microorganisms‎
  • 2023‎

Bacterial keratitis is a risk associated with the use of contact lenses for cosmetic purposes or vision correction. In this in vitro experimental study, we examined the ability of the ocular pathogen Serratia marcescens to adhere to monthly or biweekly replacement contact lenses. We performed quantitative adhesion assays to evaluate the adherence of S. marcescens to seven contact lens materials: comfilcon A, senofilcon A, omafilcon B, fanfilcon A, balafilcon A, senofilcon C, and lehfilcon A. Lehfilcon A is a newly marketed silicon hydrogel contact lens with a surface modification of poly-(2-methacryloyloxyethyl phosphorylcholine) (PMPC). PMPC has previously been demonstrated to be an effective anti-biofouling treatment for numerous surfaces. We observed low S. marcescens adherence to lehfilcon A compared to other materials. We demonstrate the use of the fluorescent dye 5(6)-Carboxytetramethylrhodamine succinimidyl ester to covalently stain live cells prior to material adhesion studies.


Secnidazole Is a Promising Imidazole Mitigator of Serratia marcescens Virulence.

  • Ahdab N Khayyat‎ et al.
  • Microorganisms‎
  • 2021‎

Serratia marcescens is an opportunistic pathogen that causes diverse nosocomial infections. S. marcescens has developed considerable resistance to different antibiotics and is equipped with an armory of virulence factors. These virulence factors are regulated in S. marcescens by an intercellular communication system termed quorum sensing (QS). Targeting bacterial virulence and QS is an interesting approach to mitigating bacterial pathogenesis and overcoming the development of resistance to antimicrobials. In this study, we aimed to evaluate the anti-virulence activities of secnidazole on a clinical isolate of S. marcescens. The effects of secnidazole at sub-inhibitory concentrations (sub-MICs) on virulence factors, swarming motility, biofilm formation, proteases, hemolysin activity, and prodigiosin production were evaluated in vitro. Secnidazole's protective activity against S. marcescens pathogenesis was assessed in vivo in mice. Furthermore, a molecular docking study was conducted to evaluate the binding ability of secnidazole to the S. marcescens SmaR QS receptor. Our findings showed that secnidazole at sub-MICs significantly reduced S. marcescens virulence factor production in vitro and diminished its pathogenesis in mice. The insilico docking study revealed a great ability of secnidazole to competitively hinder the binding of the autoinducer to the SmaR QS receptor. In conclusion, secnidazole is a promising anti-virulence agent that may be used to control infections caused by S. marcescens.


RNA‑seq analyses of antibiotic resistance mechanisms in Serratia marcescens.

  • Zhaodong Li‎ et al.
  • Molecular medicine reports‎
  • 2019‎

The present study aimed to further clarify the genetic mechanisms responsible for the antimicrobial resistance of Serratia marcescens (S. marcescens) using RNA sequencing. Three drug‑susceptible S. marcescens strains (named MYQT1, MYQT2, and MYQT3) and three multidrug‑resistant S. marcescens strains (named MYQT4, MYQT5, and MYQT6) were isolated from six different patients and subjected to RNA sequencing. Differentially expressed genes (DEGs) between the multidrug‑resistant S. marcescens strains and drug‑susceptible strains were screened and compared, followed by functional enrichment analysis. In addition, a protein‑protein interaction (PPI) network was constructed, and significant modules were extracted from it. Genes enriched in the significant modules were subjected to further enrichment analysis. MYQT3 had very a different expression pattern from MYQT1 and MYQT2, and thus, MYQT3 was excluded from the following analysis. A total of 225 DEGs were identified, of which SMDB11_RS09300 (GTP cyclohydrolase FolE2) was the most significantly upregulated with a log2 FC of 6.4; these DEGs were enriched in different GO terms, including hydrogen sulfide biosynthetic process, sulfur compound transmembrane transporter activity, and ABC transporter complex. Additionally, several genes were identified to be important genes in the PPI network, including SMDB11_RS17755 (upregulated; glutamate synthase large subunit), SMDB11_RS00590 (upregulated; sulfite reductase subunit α), and SMDB11_RS04505 (upregulated; cystathionine β‑synthase). Thus, SMDB11_RS09300, SMDB11_RS17755, SMDB11_RS00590, and SMDB11_RS04505 may play significant roles in the antimicrobial resistance of S. marcescens by participating in folate metabolism or the integrity of cell membranes. However, further experiments are required to clarify these findings.


Proteomic profiling of Serratia marcescens by high-resolution mass spectrometry.

  • Bhavya Somalapura Gangadharappa‎ et al.
  • BioImpacts : BI‎
  • 2020‎

Introduction: Serratia marcescens, an opportunistic human pathogen, is reported as an important cause of nosocomial infection and outbreaks. Although the genome of S. marcescens (ATCC 13880) was completely sequenced by 2014, there are no studies on the proteomic profile of the organism. The objective of the present study is to analyze the protein profile of S. marcescens (ATCC 13880) using a high resolution mass spectrometry (MS). Methods: Serratia marcescens ATCC 13880 strain was grown in Luria-Bertani broth and the protein extracted was subjected to trypsin digestion, followed by basic reverse phase liquid chromatography fractionation. The peptide fractions were then analysed using Orbitrap Fusion Mass Spectrometry and the raw MS data were processed in Proteome Discoverer software. Results: The proteomic analysis identified 15 009 unique peptides mapping to 2541 unique protein groups, which corresponds to approximately 54% of the computationally predicted protein-coding genes. Bioinformatic analysis of these identified proteins showed their involvement in biological processes such as cell wall organization, chaperone-mediated protein folding and ATP binding. Pathway analysis revealed that some of these proteins are associated with bacterial chemotaxis and beta-lactam resistance pathway. Conclusion: To the best of our knowledge, this is the first high-throughput proteomics study of S. marcescens (ATCC 13880). These novel observations provide a crucial baseline molecular profile of the S. marcescens proteome which will prove to be helpful for the future research in understanding the host-pathogen interactions during infection, elucidating the mechanism of multidrug resistance, and developing novel diagnostic markers or vaccine for the disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: