Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

Selective serotonin reuptake inhibitors (SSRIs) prevent meta-iodobenzylguanidine (MIBG) uptake in platelets without affecting neuroblastoma tumor uptake.

  • Thomas Blom‎ et al.
  • EJNMMI research‎
  • 2020‎

The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, mainly consisting of persistent and severe thrombocytopenia. While MIBG accumulates in neuroblastoma cells via selective uptake by the norepinephrine transporter (NET), the serotonin transporter (SERT) is responsible for cellular uptake of MIBG in platelets. In this study, we have investigated whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent radiotoxic MIBG uptake in platelets without affecting neuroblastoma tumor uptake.


Suppression of cigarette smoke induced MMP1 expression by selective serotonin re-uptake inhibitors.

  • Gerber Adam‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2021‎

Globally, COPD remains a major cause of disability and death. In the United States alone, it is estimated that approximately 14 million people suffer from the disease. Given the high disease burden and requirement for chronic, long-term medical care associated with COPD, it is essential that new disease modifying agents are developed to complement the symptomatic therapeutics currently available. In the present report, we have identified a potentially novel therapeutic agent through the use of a high throughput screen based on the knowledge that cigarette smoke induces the proteolytic enzyme MMP1 leading to destruction of the lung in COPD. A construct utilizing the cigarette responsive promoter element of MMP-1 was conjugated to a luciferase reporter and utilized in an in vitro assay to screen the NIH Molecular Libraries Small Molecule Repository to identify putative targets that suppressed luciferase expression in response to cigarette smoke extract (CSE). Selective serotonin reuptake inhibitors potently inhibited luciferase expression and were further validated. SSRI treatment suppressed MMP-1 production in small airway epithelial cells exposed to (CSE) in vitro as well as in smoke exposed rabbits. In addition, SSRI treatment inhibited inflammatory cytokine production while rescuing cigarette smoke induced downregulation in vivo of the anti-inflammatory lipid transporter ABCA1, previously shown by our laboratory to be lung protective. Importantly, SSRI treatment prevented lung destruction in smoke exposed rabbits as measured by morphometry. These studies support further investigation into SSRIs as a novel therapeutic for COPD may be warranted.


Selective Serotonin Re-Uptake Inhibitors for Premature Ejaculation in Adult Men: A Cochrane Systematic Review.

  • Niranjan J Sathianathen‎ et al.
  • The world journal of men's health‎
  • 2022‎

Selective serotonin re-uptake inhibitors (SSRIs) are frequently used to treat premature ejaculation (PE) in men. We performed a Cochrane review to assess the efficacy of SSRI treatment for PE.


The effect of the use of proton pump inhibitors, serotonin uptake inhibitors, antihypertensive, and anti-inflammatory drugs on clinical outcomes of functional dental implants: A retrospective study.

  • Stefano Corbella‎ et al.
  • Clinical oral implants research‎
  • 2022‎

The present retrospective study investigated the effect of chronic intake of proton pump inhibitors, selective serotonin uptake inhibitors, anti-inflammatory, and antihypertensive drugs on the survival of dental implants and on the occurrence of peri-implantitis.


The effect of selective serotonin re-uptake inhibitors on risk of type II diabetes mellitus and acute pancreatitis: a meta-analysis.

  • Shun Yao‎ et al.
  • Bioscience reports‎
  • 2018‎

To explore the effect of selective serotonin re-uptake inhibitors (SSRIs) on risk of type II diabetes mellitus (T2DM) and acute pancreatitis (AP), expecting to provide guidance for clinic. Literature was retrieved by searching Pubmed, Embase, Cochrane and Scopus and hand searching of reference lists of related articles. Stata 14.0 was utilized for processing and analysis, and adjusted odds ratios (aORs) were applied. Our study included 113898 T2DM patients and 284131 controls from nine studies and 17548 AP patients and 108108 controls from four studies. The pooled aORs of SSRIs on the risk of T2DM and AP were 1.38 (95% confidence interval (CI) = 1.24-1.54) and 1.26 (95% CI = 1.13-1.40), respectively. Study design, quality, ethnicity, follow-up, and sample size of patients were the resources of heterogeneity. Subgroup analysis showed that 2 weeks is a high-risk time for AP after SSRIs use, with 1.48-fold-times as much after it. This meta-analysis provides evidence of a significant positive association between SSRIs use and risks of T2DM or AP, and duration of 2 weeks of SSRIs use has higher risk of AP, which should be paid much attention to.


Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release.

  • Elyse C Dankoski‎ et al.
  • Journal of neurochemistry‎
  • 2016‎

Selective serotonin reuptake inhibitors (SSRIs) were designed to treat depression by increasing serotonin levels throughout the brain via inhibition of clearance from the extracellular space. Although increases in serotonin levels are observed after acute SSRI exposure, 3-6 weeks of continuous use is required for relief from the symptoms of depression. Thus, it is now believed that plasticity in multiple brain systems that are downstream of serotonergic inputs contributes to the therapeutic efficacy of SSRIs. The onset of antidepressant effects also coincides with desensitization of somatodendritic serotonin autoreceptors in the dorsal raphe nucleus (DRN), suggesting that disrupting inhibitory feedback within the serotonin system may contribute to the therapeutic effects of SSRIs. Previously, we showed that chronic SSRI treatment caused a frequency-dependent facilitation of serotonin signaling that persisted in the absence of uptake inhibition. In this work, we use in vivo fast-scan cyclic voltammetry in mice to investigate a similar facilitation after a single treatment of the SSRI citalopram hydrobromide. Acute citalopram hydrobromide treatment resulted in frequency-dependent increases of evoked serotonin release in the substantia nigra pars reticulata. These increases were independent of changes in uptake velocity, but required SERT expression. Using microinjections, we show that the frequency-dependent enhancement in release is because of SERT inhibition in the DRN, demonstrating that SSRIs can enhance serotonin release by inhibiting uptake in a location distal to the terminal release site. The novel finding that SERT inhibition can disrupt modulatory mechanisms at the level of the DRN to facilitate serotonin release will help future studies investigate serotonin's role in depression and motivated behavior. In this work, stimulations of the dorsal raphe nucleus (DRN) evoke serotonin release that is recorded in the substantia nigra pars reticulata (SNpr) using in vivo fast-scan cyclic voltammetry. Systemic administration of a selective serotonin reuptake inhibitor (SSRI) causes both an increase in t1/2 and an increase in [5-HT]max in the SNpr. Local application of SSRI to the DRN recapitulates the increase in [5-HT]max observed in the SNpr without affecting uptake. Thus, SSRIs increase serotonin signaling via two distinct SERT-mediated mechanisms.


Selective serotonin re-uptake inhibitor sertraline inhibits bone healing in a calvarial defect model.

  • R Nicole Howie‎ et al.
  • International journal of oral science‎
  • 2018‎

Bone wound healing is a highly dynamic and precisely controlled process through which damaged bone undergoes repair and complete regeneration. External factors can alter this process, leading to delayed or failed bone wound healing. The findings of recent studies suggest that the use of selective serotonin reuptake inhibitors (SSRIs) can reduce bone mass, precipitate osteoporotic fractures and increase the rate of dental implant failure. With 10% of Americans prescribed antidepressants, the potential of SSRIs to impair bone healing may adversely affect millions of patients' ability to heal after sustaining trauma. Here, we investigate the effect of the SSRI sertraline on bone healing through pre-treatment with (10 mg·kg-1 sertraline in drinking water, n = 26) or without (control, n = 30) SSRI followed by the creation of a 5-mm calvarial defect. Animals were randomized into three surgical groups: (a) empty/sham, (b) implanted with a DermaMatrix scaffold soak-loaded with sterile PBS or (c) DermaMatrix soak-loaded with 542.5 ng BMP2. SSRI exposure continued until sacrifice in the exposed groups at 4 weeks after surgery. Sertraline exposure resulted in decreased bone healing with significant decreases in trabecular thickness, trabecular number and osteoclast dysfunction while significantly increasing mature collagen fiber formation. These findings indicate that sertraline exposure can impair bone wound healing through disruption of bone repair and regeneration while promoting or defaulting to scar formation within the defect site.


Ligand coupling mechanism of the human serotonin transporter differentiates substrates from inhibitors.

  • Ralph Gradisch‎ et al.
  • Nature communications‎
  • 2024‎

The presynaptic serotonin transporter (SERT) clears extracellular serotonin following vesicular release to ensure temporal and spatial regulation of serotonergic signalling and neurotransmitter homeostasis. Prescription drugs used to treat neurobehavioral disorders, including depression, anxiety, and obsessive-compulsive disorder, trap SERT by blocking the transport cycle. In contrast, illicit drugs of abuse like amphetamines reverse SERT directionality, causing serotonin efflux. Both processes result in increased extracellular serotonin levels. By combining molecular dynamics simulations with biochemical experiments and using a homologous series of serotonin analogues, we uncovered the coupling mechanism between the substrate and the transporter, which triggers the uptake of serotonin. Free energy analysis showed that only scaffold-bound substrates could initiate SERT occlusion through attractive long-range electrostatic interactions acting on the bundle domain. The associated spatial requirements define substrate and inhibitor properties, enabling additional possibilities for rational drug design approaches.


Selective serotonin reuptake inhibitors affect structure, function and metabolism of skeletal muscle: A systematic review.

  • Diego Bulcão Visco‎ et al.
  • Pharmacological research‎
  • 2018‎

Selective Serotonin Reuptake Inhibitors (SSRIs) may have side effects, such as stiffness, tremors and altered tonic activity, as well as an increased risk of developing insulin resistance and diabetes mellitus. However, little is known about the structural, functional and metabolic changes of skeletal muscle after administration of SSRIs. The aim of this systematic review was to explore and discuss the effects of SSRIs on skeletal muscle properties described in human and rodent studies. A systematic search of PUBMED, SCOPUS, and WEB OF SCIENCE was performed. The inclusion criteria were intervention studies in humans and rodents that analysed the effects of SSRIs on skeletal muscle properties. The research found a total of six human studies, including two randomized controlled trials, one non-randomized controlled trial, one uncontrolled before-after study and two case reports, and six preclinical studies in rodents. Overall, the studies in humans and rodents showed altered electrical activity in skeletal muscle function, assessed through electromyography (EMG) and needle EMG in response to chronic treatment or local injection with SSRIs. In addition, rodent studies reported that SSRIs may exert effects on muscle weight, the number of myocytes and the cross-sectional area of skeletal muscle fibre. The results showed effects in energy metabolism associated with chronic SSRI use, reporting altered levels of glycogen synthase activity, acetyl-CoA carboxylase phosphorylation, citrate synthase activity, and protein kinase B Ser phosphorylation. Moreover, changes in insulin signalling and glucose uptake were documented. In this context, we concluded based on human and rodent studies that SSRIs affect electrical muscle activity, structural properties and energy metabolism in skeletal muscle tissue. However, these changes varied according to pre-existing metabolic and functional conditions in the rodents and humans.


Serotonin re-uptake transporter gene polymorphisms are associated with imatinib-induced diarrhoea in chronic myeloid leukaemia patients.

  • Andrea Davies‎ et al.
  • Scientific reports‎
  • 2020‎

Tyrosine kinase inhibitors (TKIs), the treatment of choice for chronic myeloid leukaemia (CML), can cause lower gastrointestinal (GI) toxicity which is manifested as diarrhoea. The mechanisms are not fully understood. The enteroendocrine signalling compound, serotonin (5-HT), is important for regulating peristaltic motion, fluid secretion and visceral hypersensitivity in the GI tract, and has been implicated in diseases such as irritable bowel syndrome. In this study, we have evaluated whether TKI-induced diarrhoea may be related to variation in the serotonin re-uptake transporter (SERT) gene. CML patients with and without diarrhoea on the SPIRIT2 trial (imatinib, n = 319; and dasatinib, n = 297) were genotyped for the promoter 5-HTTLPR, intron 2 VNTR and rs25531 polymorphisms by PCR-based methods. Diarrhoea was more prevalent in imatinib, than in dasatinib treated patients (P = 0.015), which when stratified by gender was seen to be driven by female patients (P = 0.036). Logistic regression analysis revealed that age, and the dominant HTTLPR with the rs25531 single nucleotide polymorphism (SNP) model, explained the occurrence of diarrhoea in ~10% of imatinib-treated female CML patients. These data suggest SERT polymorphisms influence imatinib-induced diarrhoea but not that of dasatinib.


Serotonin uptake via plasma membrane monoamine transporter during myocardial ischemia-reperfusion in the rat heart in vivo.

  • Takashi Sonobe‎ et al.
  • Physiological reports‎
  • 2019‎

Serotonin (5-HT) accumulates in the heart during myocardial ischemia and induces deleterious effects on the cardiomyocytes through receptor-dependent and monoamine oxidase-dependent pathways. We aimed to clarify the involvement of extra-neuronal monoamine transporters in the clearance of 5-HT during ischemia and reperfusion in the heart. Using a microdialysis technique in the anesthetized Wistar rat heart, we monitored myocardial interstitial 5-HT and 5-hydroxyindole acetic acid (5-HIAA) concentration by means of electro-chemical detection coupled with high-performance liquid chromatography (HPLC-ECD). Effects of inhibitors of the plasma membrane monoamine transporter (PMAT) and the organic cation transporter 3 (OCT3) (decynium-22 and corticosterone) on the 5-HT and 5-HIAA concentrations during baseline, coronary occlusion, and reperfusion were investigated. Basal dialysate 5-HT concentration were increased by local administration of decynium-22, but not by corticosterone. Addition of fluoxetine, a serotonin transporter (SERT) inhibitor further increased the 5-HT concentration upon during administration of decynium-22. Decynium-22 elevated the background level of 5-HT during coronary occlusion and maintained 5-HT concentration at a high level during reperfusion. Production of 5-HIAA in the early reperfusion was significantly suppressed by decynium-22. These results indicate that PMAT and SERT independently regulate basal level of interstitial 5-HT, and PMAT plays a more important role in the clearance of 5-HT during reperfusion. These data suggest the involvement of PMAT in the monoamine oxidase-dependent deleterious pathway in the heart.


Inhibition of the Serotonin Transporter Is Altered by Metabolites of Selective Serotonin and Norepinephrine Reuptake Inhibitors and Represents a Caution to Acute or Chronic Treatment Paradigms.

  • Danielle Krout‎ et al.
  • ACS chemical neuroscience‎
  • 2017‎

Previous studies of transgenic mice carrying a single isoleucine to methionine substitution (I172M) in the serotonin transporter (SERT) demonstrated a loss of sensitivity to multiple antidepressants (ADs) at SERT. However, the ability of AD metabolites to antagonize SERT was not assessed. Here, we evaluated the selectivity and potency of these metabolites for inhibition of SERT in mouse brain-derived synaptosomes and blood platelets from wild-type (I172 mSERT) and the antidepressant-insensitive mouse M172 mSERT. The metabolites norfluoxetine and desmethylsertraline lost the selectivity demonstrated by the parent compounds for inhibition of wild-type mSERT over M172 mSERT, whereas desvenlafaxine and desmethylcitalopram retained selectivity. Furthermore, we show that the metabolite desmethylcitalopram accumulates in the brain and that the metabolites desmethylcitalopram, norfluoxetine, and desvenlafaxine inhibit serotonin uptake in wild-type mSERT at potencies similar to those of their parent compounds, suggesting that metabolites may play a role in effects observed following AD administration in wild-type and M172 mice.


Thrombocytopenia after meta-iodobenzylguanidine (MIBG) therapy in neuroblastoma patients may be caused by selective MIBG uptake via the serotonin transporter located on megakaryocytes.

  • Thomas Blom‎ et al.
  • EJNMMI research‎
  • 2021‎

The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, primarily consisting of severe and persistent thrombocytopenia. We hypothesize that this is caused by selective uptake of MIBG via the serotonin transporter (SERT) located on platelets and megakaryocytes. In this study, we have investigated whether in vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG and whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent this radiotoxic MIBG uptake.


Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational changes in the bundle domain.

  • Ralph Gradisch‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter's engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.


Placental Changes in the serotonin transporter (Slc6a4) knockout mouse suggest a role for serotonin in controlling nutrient acquisition.

  • Jiude Mao‎ et al.
  • Placenta‎
  • 2021‎

The mouse placenta accumulates and possibly produces serotonin (5-hydroxytryptamine; 5-HT) in parietal trophoblast giant cells (pTGC) located at the interface between the placenta and maternal deciduum. However, the roles of 5-HT in placental function are unclear. This lack of information is unfortunate, given that selective serotonin-reuptake inhibitors are commonly used to combat depression in pregnant women. The high affinity 5-HT transporter SLC6A4 (also known as SERT) is the target of such drugs and likely controls much of 5-HT uptake into pTGC and other placental cells. We hypothesized that ablation of the Slc6a4 gene would result in morphological changes correlated with placental gene expression changes, especially for those involved in nutrient acquisition and metabolism, and thereby, provide insights into 5-HT placental function.


Pharmacological characterization and visualization of the glial serotonin transporter.

  • M Inazu‎ et al.
  • Neurochemistry international‎
  • 2001‎

Astrocytes contain transport systems that are capable of removing various neurotransmitters from the synaptic cleft by transporters present in the plasma membrane. Glial serotonin transporter (SERT) plays an important role in the re-uptake of 5-hydroxytryptamine (5-HT). We examined the pharmacological characterization of 5-HT uptake into rat cortical synaptosomes and cultured rat astrocytes, and the immunodetection of glial SERT proteins using specific site-directed monoclonal antibodies (MoAb). Furthermore, using a reverse transcriptase-polymerase chain reaction (RT-PCR) method, we addressed the expression of SERT mRNA in cultured rat astrocytes. We investigated the inhibitory effects of various monoamine uptake inhibitors on the uptake of [3H]5-HT into cultured astrocytes and cortical synaptosomes. Tricyclic antidepressants (clomipramine and imipramine) as well as selective serotonin re-uptake inhibitors (fluvoxamine, fluoxetine and zimelidine) were very potent inhibitors of [3H]5-HT uptake in both preparations. In contrast, the inhibitory effects of NE uptake inhibitors (nisoxetine and desipramine) and cocaine were weaker than those of 5-HT uptake inhibitors. In addition, dopamine (DA) uptake inhibitors (nomifensine and GBR-12935) exhibited a Ki value in the low micromolar range. The inhibitory potencies were in the order 5-HT uptake inhibitors (clomipramine, fluvoxamine, fluoxetine, imipramine and zimelidine) > NE uptake inhibitors (nisoxetine and desipramine) = cocaine > DA uptake inhibitors (nomifensine and GBR-12935). There was no difference in the order of the inhibitory effects of various monoamine uptake inhibitors between the two preparations. A correlation analysis of the potencies of various monoamine uptake inhibitors in the inhibition of [3H]5-HT into cultured astrocytes and cortical synaptosomes produced a highly significant correlation coefficient of 0.9893 (P < 0.0001). Immunocytochemical staining using anti-SERT MoAb in cultured astrocytes revealed that the plasma membrane, as well as intracellular, perinuclear compartments, presumably endoplasmic reticulum or golgi membranes, showed a considerable level of immunoreactivity. Extracts of astrocytes and synaptosomes from the cortex were immunoblotted with anti-SERT MoAb. SDS-PAGE/Western blots indicate that anti-SERT MoAb recognized two bands of 120 and 73 kDa in both preparations. RT-PCR demonstrated that astrocytes in cultured expressed mRNA for the cloned SERT protein, which has been characterized as the neuronal SERT. These pharmacological experiments indicate that this uptake process takes place through glial SERT that is very similar to neuronal SERT. Furthermore, the present data also indicate that the presence of the mRNA and protein for the neuronal SERT were established in cultured rat astrocytes, and the polypeptide portion of SERT in astrocytes and frontal cortex could be the same gene product.


A mechanism of uncompetitive inhibition of the serotonin transporter.

  • Shreyas Bhat‎ et al.
  • eLife‎
  • 2023‎

The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.


Serotonin is a Common Thread Linking Different Classes of Antidepressants.

  • Colby E Witt‎ et al.
  • Research square‎
  • 2023‎

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).


Effect of serotonin on platelet function in cocaine exposed blood.

  • Endrit Ziu‎ et al.
  • Scientific reports‎
  • 2014‎

5-hydroxytryptamine (5-HT) reuptake inhibitors counteract the pro-thrombotic effect of elevated plasma 5-HT by down-regulating the 5-HT uptake rates of platelets. Cocaine also down-regulates the platelet 5-HT uptake rates but in contrast, the platelets of cocaine-injected mice show a much higher aggregation rate than the platelets of control mice. To examine the involvement of plasma 5-HT in cocaine-mediated platelet aggregation, we studied the function of platelets isolated from wild-type and transgenic, peripheral 5-HT knock-out (TPH1-KO) mice, and cocaine-insensitive dopamine transporter knock in (DAT-KI) mice. In cocaine-injected mice compared to the control mice, the plasma 5-HT level as well as the surface level of P-selectin was elevated; in vitro platelet aggregation in the presence of type I fibrillar collagen was enhanced. However, cocaine injection lowered the 5-HT uptake rates of platelets and increased the plasma 5-HT levels of the DAT-KI mice but did not change their platelets aggregation rates further which are already hyper-reactive. Furthermore, the in vitro studies supporting these in vivo findings suggest that cocaine mimics the effect of elevated plasma 5-HT level on platelets and in 5-HT receptor- and transporter-dependent pathways in a two-step process propagates platelet aggregation by an additive effect of 5-HT and nonserotonergic catecholamine.


Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation.

  • Hiroto Nakayama‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2014‎

We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin-dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: