Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 265 papers

Serotonin-releasing agents with reduced off-target effects.

  • Felix P Mayer‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Increasing extracellular levels of serotonin (5-HT) in the brain ameliorates symptoms of depression and anxiety-related disorders, e.g., social phobias and post-traumatic stress disorder. Recent evidence from preclinical and clinical studies established the therapeutic potential of drugs inducing the release of 5-HT via the 5-HT-transporter. Nevertheless, current 5-HT releasing compounds under clinical investigation carry the risk for abuse and deleterious side effects. Here, we demonstrate that S-enantiomers of certain ring-substituted cathinones show preference for the release of 5-HT ex vivo and in vivo, and exert 5-HT-associated effects in preclinical behavioral models. Importantly, the lead cathinone compounds (1) do not induce substantial dopamine release and (2) display reduced off-target activity at vesicular monoamine transporters and 5-HT2B-receptors, indicative of low abuse-liability and low potential for adverse events. Taken together, our findings identify these agents as lead compounds that may prove useful for the treatment of disorders where elevation of 5-HT has proven beneficial.


Augmentation agents to serotonin reuptake inhibitors for treatment-resistant obsessive-compulsive disorder: A network meta-analysis.

  • Dong-Dong Zhou‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2019‎

Various agents for augmentation of serotonin reuptake inhibitors have been investigated for treatment-resistant obsessive-compulsive disorder (OCD). We aimed to comprehensively compare different augmentation agents for treatment-resistant OCD in adults.


Gαi/o-coupled Htr2c in the paraventricular nucleus of the hypothalamus antagonizes the anorectic effect of serotonin agents.

  • Eun-Seon Yoo‎ et al.
  • Cell reports‎
  • 2021‎

The anorexigenic effect of serotonergic compounds has largely been attributed to activation of serotonin 2C receptors (Htr2cs). Using mouse genetic models in which Htr2c can be selectively deleted or restored (in Htr2c-null mice), we investigate the role of Htr2c in forebrain Sim1 neurons. Unexpectedly, we find that Htr2c acts in these neurons to promote food intake and counteract the anorectic effect of serotonergic appetite suppressants. Furthermore, Htr2c marks a subset of Sim1 neurons in the paraventricular nucleus of the hypothalamus (PVH). Chemogenetic activation of these neurons in adult mice suppresses hunger, whereas their silencing promotes feeding. In support of an orexigenic role of PVH Htr2c, whole-cell patch-clamp experiments demonstrate that activation of Htr2c inhibits PVH neurons. Intriguingly, this inhibition is due to Gαi/o-dependent activation of ATP-sensitive K+ conductance, a mechanism of action not identified previously in the mammalian nervous system.


First-in-Class Selenium-Containing Potent Serotonin Receptor 5-HT6 Agents with a Beneficial Neuroprotective Profile against Alzheimer's Disease.

  • Patryk Pyka‎ et al.
  • Journal of medicinal chemistry‎
  • 2024‎

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


The 1,3,5-Triazine Derivatives as Innovative Chemical Family of 5-HT6 Serotonin Receptor Agents with Therapeutic Perspectives for Cognitive Impairment.

  • Gniewomir Latacz‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Among serotonin receptors, the 5-HT6 subtype is the most controversial and the least known in the field of molecular mechanisms. The 5-HT6R ligands can be pivotal for innovative treatment of cognitive impairment, but none has reached pharmacological market, predominantly, due to insufficient "druglikeness" properties. Recently, 1,3,5-triazine-piperazine derivatives were identified as a new chemical family of potent 5-HT6R ligands. For the most active triazine 5-HT6R agents found (1-4), a wider binding profile and comprehensive in vitro evaluation of their drug-like parameters as well as behavioral studies and an influence on body mass in vivo were investigated within this work. Results indicated the most promising pharmacological/druglikeness profiles for 4-((1H-indol-3-yl)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) and 4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (4), which displayed a significant procognitive action and specific anxiolytic-like effects in the behavioral tests in vivo together with satisfied pharmaceutical and safety profiles in vitro. The thymol derivative (4) seems to be of higher importance as a new lead candidate, due to the innovative, non-indole and non-sulfone structure with the best 5-HT6R binding properties.


Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT7 receptor agents with antidepressant activity.

  • Katarzyna Kucwaj-Brysz‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

This paper presents a computer-aided insight into the receptor-ligand interaction for novel analogs of the lead structure 5-(4-fluorophenyl)-3-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione (1, MF-8), as part of the search for potent and selective serotonin 5-HT7 receptor (5-HT7R) agents. New hydantoin derivatives (4-19) were designed and synthesized. For 5-phenyl-3-(2-hydroxy-3-(4-(2-ethoxyphenyl)piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione (4), its crystal structure was determined experimentally. Molecular modeling studies were performed, including both pharmacophore and structure-based approaches. New compounds were investigated in radioligand binding assays (RBA) for their affinity toward 5-HT7R and selectivity over 5-HT1AR, dopamine D2R and α1-, α2-and β-adrenoceptors. Selected compounds (5-8) were assessed for their antidepressant and anxiolytic effects in vivo in mice. Most of the tested compounds displayed potent affinity and selectivity for 5-HT7R in RBA, in particular seven compounds (4, 5, 7, 8 and 10-12,Ki ≤ 10 nM). Antidepressant-like activity in vivo for all tested compounds (5-8) was confirmed. SAR analysis based on both crystallography-supported molecular modeling and RBA results indicated that mono-phenyl substituents at both hydantoin and piperazine are more favorable for 5-HT7R affinity than the di-phenyl ones.


Serotonin 5-HT6 Receptor Ligands and Butyrylcholinesterase Inhibitors Displaying Antioxidant Activity-Design, Synthesis and Biological Evaluation of Multifunctional Agents against Alzheimer's Disease.

  • Krzysztof Więckowski‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Neurodegeneration leading to Alzheimer's disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT6 receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman's assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation. Based on the results we selected compound 14 as a well-balanced and potent 5-HT6 receptor ligand (Ki = 22 nM) and human BuChE inhibitor (IC50 = 16 nM) with antioxidant potential expressed as a reduction of ABTS radicals by 35% (150 μM). The study also revealed additional metal-chelating properties of compounds 15 and 18. The presented compounds modulating Alzheimer's disease-related processes might be further developed as multifunctional ligands against the disease.


No association of serotonin transporter polymorphism (5-HTTVNTR and 5-HTTLPR) with characteristics and treatment response to atypical antipsychotic agents in schizophrenic patients.

  • Hwa-Young Lee‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2009‎

Serotonin transporter is a candidate gene for the pathogenesis of some psychiatric disorders. The aim of this study was to examine the role of the serotonin transporter gene polymorphism in the clinical aspects of schizophrenia including symptomatology and therapeutic response.


Novel serotonin 5-HT2A receptor antagonists derived from 4-phenylcyclohexane-5-spiro-and 5-methyl-5-phenyl-hydantoin, for use as potential antiplatelet agents.

  • Anna Czopek‎ et al.
  • Pharmacological reports : PR‎
  • 2021‎

Antiplatelet drugs have been used in the treatment of acute coronary syndromes and for the prevention of recurrent events. Unfortunately, many patients remain resistant to the available antiplatelet treatment. Therefore, there is a clinical need to synthesize novel antiplatelet agents, which would be associated with different pathways of platelet aggregation, to develop an alternative or additional treatment for resistant patients. Recent studies have revealed that 5-HT2A receptor antagonists could constitute alternative antiplatelet therapy.


Use of serotonin reuptake inhibitor antidepressants and the risk of bleeding complications in patients on anticoagulant or antiplatelet agents: a systematic review and meta-analysis.

  • Surapon Nochaiwong‎ et al.
  • Annals of medicine‎
  • 2022‎

Serotonin reuptake inhibitor (SRI) antidepressants are implicated in increasing the risk of bleeding among users; however, the comparative increase in bleeding risk with concurrent antithrombotic therapy (anticoagulant or antiplatelet) remains unclear. As such, we performed a systematic review and meta-analysis of all available evidence to evaluate the effects of SRI and the risk of bleeding complications among patients receiving antithrombotic therapy.


Autoreceptor control of serotonin dynamics.

  • Janet Best‎ et al.
  • BMC neuroscience‎
  • 2020‎

Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding involves genomics, neurochemistry, electrophysiology, and behavior. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders. This paper presents a new deterministic model of serotonin metabolism and a new systems population model that takes into account the large variation in enzyme and transporter expression levels, tryptophan input, and autoreceptor function.


1-(m-chlorophenyl)piperazine (mCPP) dissociates in vivo serotonin release from long-term serotonin depletion in rat brain.

  • M H Baumann‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2001‎

Serotonin (5-HT) releasing agents such as d-fenfluramine are known to cause long-term depletion of forebrain 5-HT in animals, but the mechanism of this effect is unknown. In the present study, we examined the relationship between drug-induced 5-HT release and long-term 5-HT depletion in rat brain. The 5-HT-releasing actions of d-fenfluramine and a non-amphetamine 5-HT drug, 1-(m-chlorophenyl)piperazine (mCPP), were compared using in vivo microdialysis in the nucleus accumbens. The ability of d-fenfluramine and mCPP to interact with 5-HT transporters was tested using in vitro assays for [3H]5-HT uptake and radioligand binding. Local infusion of d-fenfluramine or mCPP (1-100 microM) increased extracellular 5-HT, with elevations in dopamine occurring at high doses. Intravenous injection of either drug (1-10 micromol/kg) produced dose-related increases in 5-HT without affecting dopamine. d-Fenfluramine and mCPP exhibited similar potency in their ability to stimulate 5-HT efflux in vivo and interact with 5-HT transporters in vitro. When rats received high-dose d-fenfluramine or mCPP (10 or 30 micromol/kg, i.p., every 2 h, 4 doses), only d-fenfluramine-treated rats displayed long-term 5-HT depletions. Thus, mCPP is a 5-HT releaser that does not appear to cause 5-HT depletion. Our data support the notion that 5-HT release per se may not be sufficient to produce the long-term 5-HT deficits associated with d-fenfluramine and other amphetamines.


cGMP-dependent protein kinase Ialpha associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake.

  • Jennifer A Steiner‎ et al.
  • Molecular brain‎
  • 2009‎

The Na(+)/Cl(-)-dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport in vitro and an increased rate of SERT-mediated 5-HT clearance in vivo. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG) and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear.


Serotonin transporter localization in the hamster suprachiasmatic nucleus.

  • R Legutko‎ et al.
  • Brain research‎
  • 2001‎

Pacemaker cells within the hamster suprachiasmatic nucleus generate circadian rhythms. The suprachiasmatic nucleus is heavily innervated by serotonin axons originating in the median raphe nuclei. Consequently, serotonergic agonists and antagonists or agents that alter levels of serotonin in the synapse following transmission can modulate many aspects of circadian rhythmicity. Examples of the latter are some antidepressants and the stimulant amphetamine that bind to the serotonin transporter and block serotonin reuptake. It has been hypothesized that circadian rhythm dysfunction may be involved in depression, and that the efficacy of certain antidepressants in treating depression may involve an alteration of serotonin levels and certain circadian rhythm parameters. However, although the hamster is the behavioral model of choice for the study of circadian rhythms, the identification of serotonin transporters in this species has not been reported. Therefore, in this report we describe the distribution of the serotonin transporter in the hamster suprachiasmatic nucleus using immunohistochemical techniques. Our results demonstrate a dense labeling of the serotonin transporter throughout the ventral and medial regions of the suprachiasmatic nucleus, a pattern that overlaps the distribution of serotonergic afferents in this nucleus. Amphetamines and certain antidepressants may serve as substrates for this transporter and elicit chronopharmacological activity by elevating serotonin levels in the suprachiasmatic nucleus.


Control of serotonin transporter phosphorylation by conformational state.

  • Yuan-Wei Zhang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2016‎

Serotonin transporter (SERT) is responsible for reuptake and recycling of 5-hydroxytryptamine (5-HT; serotonin) after its exocytotic release during neurotransmission. Mutations in human SERT are associated with psychiatric disorders and autism. Some of these mutations affect the regulation of SERT activity by cGMP-dependent phosphorylation. Here we provide direct evidence that this phosphorylation occurs at Thr276, predicted to lie near the cytoplasmic end of transmembrane helix 5 (TM5). Using membranes from HeLa cells expressing SERT and intact rat basophilic leukemia cells, we show that agents such as Na(+) and cocaine that stabilize outward-open conformations of SERT decreased phosphorylation and agents that stabilize inward-open conformations (e.g., 5-HT, ibogaine) increased phosphorylation. The opposing effects of the inhibitors cocaine and ibogaine were each reversed by an excess of the other inhibitor. Inhibition of phosphorylation by Na(+) and stimulation by ibogaine occurred at concentrations that induced outward opening and inward opening, respectively, as measured by the accessibility of cysteine residues in the extracellular and cytoplasmic permeation pathways, respectively. The results are consistent with a mechanism of SERT regulation that is activated by the transport of 5-HT, which increases the level of inward-open SERT and may lead to unwinding of the TM5 helix to allow phosphorylation.


Superoxide as an intermediate signal for serotonin-induced mitogenesis.

  • S L Lee‎ et al.
  • Free radical biology & medicine‎
  • 1998‎

Serotonin (5-HT) stimulates tyrosine phosphorylation and proliferation of bovine pulmonary artery smooth muscle cells (SMC) through its active transport (Lee et al, 1991). The present studies show that 5-HT also rapidly elevates O2.- formation by these cells within 10 minutes as measured by a lucigenin-enhanced chemiluminescence assay. The O2.- free radical quencher, Tiron, and N-acetyl-cysteine, a substrate for glutathione, block both the 5-HT-induced formation of O2.- and cellular proliferation. Similarly, inhibition of 5-HT transport with imipramine or treatment of cells with diphenyliodonium, a NAD(P)H oxidase inhibitor, block both 5-HT-induced elevation of O2.- and cellular proliferation. Alpha-hydroxyfarnesylphosphonic acid, an inhibitor of p21ras, also blocks 5-HT-induced proliferation. Endothelial cells from the same vessel show neither 5-HT-induced proliferation nor stimulation of O2.- formation. We conclude that 5-HT induced cellular proliferation of SMC through signaling pathways that utilize its transport system and O2.- formation.


ROS-Scavenging Selenofluoxetine Derivatives Inhibit In Vivo Serotonin Reuptake.

  • Giovanni Ribaudo‎ et al.
  • ACS omega‎
  • 2022‎

While the neurochemistry that underpins the behavioral phenotypes of depression is the subject of many studies, oxidative stress caused by the inflammation comorbid with depression has not adequately been addressed. In this study, we described novel antidepressant-antioxidant agents consisting of selenium-modified fluoxetine derivatives to simultaneously target serotonin reuptake (antidepressant action) and oxidative stress. Excitingly, we show that one of these agents (1-F) carries the ability to inhibit serotonin reuptake in vivo in mice. We therefore present a frontier dual strategy that paves the way for the future of antidepressant therapies.


Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

  • Bruce A Davis‎ et al.
  • Scientific reports‎
  • 2016‎

The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity.


Orexin receptor antagonists as therapeutic agents for insomnia.

  • Ana C Equihua‎ et al.
  • Frontiers in pharmacology‎
  • 2013‎

Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed arousal, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.


Serotonin-immunoreactivity in the adrenal medulla: distribution and response to pharmacological manipulation.

  • M A Holzwarth‎ et al.
  • Brain research bulletin‎
  • 1984‎

We previously found serotonin in the adrenal medulla of the rat using immunocytochemical methods. Serotonin immunoreactivity was found in 75% of the medullary cells and by double staining techniques was found to be present in epinephrine-containing cells. In order to better understand the chemical and pharmacological nature of the adrenomedullary serotonin containing cells, we undertook the present studies to characterize the cells' response to a number of agents which have been used to assess biochemical relationships in other serotonin systems. The responsiveness of the serotonin-containing cells to these agents was determined by immunocytochemical methods directed against serotonin. Reserpine, a monoamine depleting agent, caused a significant reduction in the amount of serotonin immunostaining. Parachloroamphetamine (PCA), a specific serotonin releaser, administered in vivo had a minimal effect on the depletion of serotonin immunoreactivity. However, when applied in vitro, PCA always caused a dose dependent depletion; the effect of PCA in vitro was blocked by pretreatment and co-incubation with serotonin-uptake inhibitor, fluoxitine. Exposure to parachlorophenylalanine (PCPA) which inhibits serotonin synthesis, resulted in a marked reduction of immunostaining of most cells. The small population of cells which still stained intensely after PCPA treatment was depleted by incubation with the specific releasing agent, parachloroamphetamine (PCA) in vitro. Restoration of control-like immunostaining after reserpine-depletion occurred with treatment with the serotonin precursor, L-tryptophan, both in vivo and in vitro. From these results we infer the existence and regulation of adrenomedullary serotonin which is similar but not identical to that reported for serotonin neurons of the CNS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: