Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 562 papers

Tool heads prime saccades.

  • Artur Pilacinski‎ et al.
  • Scientific reports‎
  • 2021‎

Tools are wielded by their handles, but a lot of information about their function comes from their heads (the action-ends). Here we investigated whether eye saccadic movements are primed by tool handles, or whether they are primed by tool heads. We measured human saccadic reaction times while subjects were performing an attentional task. We found that saccades were executed quicker when performed to the side congruent with the tool head, even though "toolness" was irrelevant for the task. Our results show that heads are automatically processed by the visual system to orient eye movements, indicating that eyes are attracted by functional parts of manipulable objects and by the characteristic information these parts convey.


Faces in scenes attract rapid saccades.

  • Petra Borovska‎ et al.
  • Journal of vision‎
  • 2023‎

During natural vision, the human visual system has to process upcoming eye movements in parallel to currently fixated stimuli. Saccades targeting isolated faces are known to have lower latency and higher velocity, but it is unclear how this generalizes to the natural cycle of saccades and fixations during free-viewing of complex scenes. To which degree can the visual system process high-level features of extrafoveal stimuli when they are embedded in visual clutter and compete with concurrent foveal input? Here, we investigated how free-viewing dynamics vary as a function of an upcoming fixation target while controlling for various low-level factors. We found strong evidence that face- versus inanimate object-directed saccades are preceded by shorter fixations and have higher peak velocity. Interestingly, the boundary conditions for these two effects are dissociated. The effect on fixation duration was limited to face saccades, which were small and followed the trajectory of the preceding one, early in a trial. This is reminiscent of a recently proposed model of perisaccadic retinotopic shifts of attention. The effect on saccadic velocity, however, extended to very large saccades and increased with trial duration. These findings suggest that multiple, independent mechanisms interact to process high-level features of extrafoveal targets and modulate the dynamics of natural vision.


Rapid visual adaptation persists across saccades.

  • Carolin Hübner‎ et al.
  • iScience‎
  • 2021‎

Neurons in the visual cortex quickly adapt to constant input, which should lead to perceptual fading within few tens of milliseconds. However, perceptual fading is rarely observed in everyday perception, possibly because eye movements refresh retinal input. Recently, it has been suggested that amplitudes of large saccadic eye movements are scaled to maximally decorrelate presaccadic and postsaccadic inputs and thus to annul perceptual fading. However, this argument builds on the assumption that adaptation within naturally brief fixation durations is strong enough to survive any visually disruptive saccade and affect perception. We tested this assumption by measuring the effect of luminance adaptation on postsaccadic contrast perception. We found that postsaccadic contrast perception was affected by presaccadic luminance adaptation during brief periods of fixation. This adaptation effect emerges within 100 milliseconds and persists over seconds. These results indicate that adaptation during natural fixation periods can affect perception even after visually disruptive saccades.


Saccades Follow Perception When Judging Location.

  • Funda Yildirim‎ et al.
  • i-Perception‎
  • 2015‎

An unresolved question in vision research is whether perceptual decision making and action are based on the same or on different neural representations. Here, we address this question for a straightforward task, the judgment of location. In our experiment, observers decided on the closer of two peripheral objects-situated on the horizontal meridian in opposite hemifields-and made a saccade to indicate their choice. Correct saccades landed close to the actual (physical) location of the target. However, in case of errors, saccades went in the direction of the more distant object, yet landed on a position approximating that of the closer one. Our finding supports the notion that perception and action-related decisions on object location rely on the same neural representation.


Sounds are remapped across saccades.

  • Martin Szinte‎ et al.
  • Scientific reports‎
  • 2020‎

To achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.


Prefrontal attentional saccades explore space rhythmically.

  • Corentin Gaillard‎ et al.
  • Nature communications‎
  • 2020‎

Recent studies suggest that attention samples space rhythmically through oscillatory interactions in the frontoparietal network. How these attentional fluctuations coincide with spatial exploration/displacement and exploitation/selection by a dynamic attentional spotlight under top-down control is unclear. Here, we show a direct contribution of prefrontal attention selection mechanisms to a continuous space exploration. Specifically, we provide a direct high spatio-temporal resolution prefrontal population decoding of the covert attentional spotlight. We show that it continuously explores space at a 7-12 Hz rhythm. Sensory encoding and behavioral reports are increased at a specific optimal phase w/ to this rhythm. We propose that this prefrontal neuronal rhythm reflects an alpha-clocked sampling of the visual environment in the absence of eye movements. These attentional explorations are highly flexible, how they spatially unfold depending both on within-trial and across-task contingencies. These results are discussed in the context of exploration-exploitation strategies and prefrontal top-down attentional control.


Saccades Matter: Reduced Need for Caloric Testing of Cochlear Implant Candidates by Joint Analysis of v-HIT Gain and Corrective Saccades.

  • Constanza Fuentealba Bassaletti‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Objectives: Video head impulse test (v-HIT) is a quick, non-invasive and relatively cheap test to evaluate vestibular function compared to the caloric test. The latter is, however, needed to decide on the optimal side to perform cochlear implantation to avoid the risk on inducing a bilateral vestibular areflexia. This study evaluates the effectiveness of using the v-HIT to select cochlear implant (CI) candidates who require subsequent caloric testing before implantation, in that way reducing costs and patient burden at the same time. Study Design: Retrospective study using clinical data from 83 adult CI-candidates, between 2015 and 2020 at the Leiden University Medical Center. Materials and Methods: We used the v-HIT mean gain, MinGain_LR, the gain asymmetry (GA) and a newly defined parameter, MGS (Minimal Gain & Saccades) as different models to detect the group of patients that would need the caloric test to decide on the ear of implantation. The continuous model MGS was defined as the MinGain_LR, except for the cases with normal gain (both sides ≥0.8) where no corrective saccades were present. In the latter case MGS was defined to be 1.0 (the ideal gain value). Results: The receiver operating characteristics curve showed a very good diagnostic accuracy with and area under the curve (AUC) of 0.81 for the model MGS. The v-HIT mean gain, the minimal gain and GA had a lower diagnostic capacity with an AUC of 0.70, 0.72, and 0.73, respectively. Using MGS, caloric testing could be avoided in 38 cases (a reduction of 46%), with a test sensitivity of 0.9 (i.e., missing 3 of 28 cases). Conclusions: The newly developed model MGS balances the sensitivity and specificity of the v-HIT better than the more commonly evaluated parameters such as mean gain, MinGain_LR and GA. Therefore, taking the presence of corrective saccades into account in the evaluation of the v-HIT gain can considerably reduce the proportion of CI-candidates requiring additional caloric testing.


Cortical oscillations and the origin of express saccades.

  • K Kirschfeld‎ et al.
  • Proceedings. Biological sciences‎
  • 1996‎

The latencies of visually guided saccadic eye movement can form bimodal distributions. The 'express saccades' associated with the first mode of the distributions are thought to be generated via an anatomical pathway different from that for the second mode, which comprises regular saccades. The following previously published observations are the basis for a new alternative model of these effects: (i) visual stimuli can cause oscillations to appear in the electroencephalogram; (ii) visual stimuli can cause a negative shift in the electroencephalogram that lasts for several hundreds of milliseconds; and (iii) negativity in the electroencephalogram can be associated with reduced thresholds of cortical neurons to stimuli. In the new model both express and regular saccades are generated by the same anatomical structures. The differences in saccadic latency are produced by an oscillatory reduction of a threshold in the saccade-generating pathway that is transiently produced under certain stimulus paradigms. The model has implications regarding the functional significance of spontaneous and stimulus-induced oscillations in the central nervous system.


Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.

  • Dimitris Voudouris‎ et al.
  • Vision research‎
  • 2016‎

Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets.


Cortical activity preceding vertical saccades: a MEG study.

  • Areti Tzelepi‎ et al.
  • Brain research‎
  • 2010‎

Previous studies have shown that upward saccade latencies are faster than downward saccade latencies in certain tasks. This asymmetry does not appear to represent a general main effect of the visual, or the vertical oculomotor system. In this study we examined the cortical activity underlying this latency asymmetry. We used MEG to assess cortical activity related to horizontal and vertical saccade preparation, and eye movement recordings to assess saccade latencies in a modified delay task. The reconstructed cortical activity was examined with respect to the onset of the target stimulus and the onset of the saccade. Upward saccades were faster than downward saccades, in agreement with previous studies. Although to a large extent, horizontal and vertical targets activated similar areas, there were also some differences. The earlier difference was found 100-150 ms after target onset over the right supramarginal gyrus when subjects attended to location-cues. Down cues activated this area faster than up cues. Moreover, cue-related activity was stronger over the left frontal cortex for up than down cues. In contrast, saccade-related activity over the same area was stronger when preceding downward than upward saccades. The results suggest that stimuli in the upper and lower visual field may have different impacts on accessing networks related to visual attention and motor preparation resulting in different behavioral asymmetries.


Causal Inference for Spatial Constancy across Saccades.

  • Jeroen Atsma‎ et al.
  • PLoS computational biology‎
  • 2016‎

Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability.


Reward learning biases the direction of saccades.

  • Ming-Ray Liao‎ et al.
  • Cognition‎
  • 2020‎

The role of associative reward learning in guiding feature-based attention and spatial attention is well established. However, no studies have looked at the extent to which reward learning can modulate the direction of saccades during visual search. Here, we introduced a novel reward learning paradigm to examine whether reward-associated directions of eye movements can modulate performance in different visual search tasks. Participants had to fixate a peripheral target before fixating one of four disks that subsequently appeared in each cardinal position. This was followed by reward feedback contingent upon the direction chosen, where one direction consistently yielded a high reward. Thus, reward was tied to the direction of saccades rather than the absolute location of the stimulus fixated. Participants selected the target in the high-value direction on the majority of trials, demonstrating robust learning of the task contingencies. In an untimed visual foraging task that followed, which was performed in extinction, initial saccades were reliably biased in the previously rewarded-associated direction. In a second experiment, following the same training procedure, eye movements in the previously high-value direction were facilitated in a saccade-to-target task. Our findings suggest that rewarding directional eye movements biases oculomotor search patterns in a manner that is robust to extinction and generalizes across stimuli and task.


Adaptive control of movement deceleration during saccades.

  • Simon P Orozco‎ et al.
  • PLoS computational biology‎
  • 2021‎

As you read this text, your eyes make saccades that guide your fovea from one word to the next. Accuracy of these movements require the brain to monitor and learn from visual errors. A current model suggests that learning is supported by two different adaptive processes, one fast (high error sensitivity, low retention), and the other slow (low error sensitivity, high retention). Here, we searched for signatures of these hypothesized processes and found that following experience of a visual error, there was an adaptive change in the motor commands of the subsequent saccade. Surprisingly, this adaptation was not uniformly expressed throughout the movement. Rather, after experience of a single error, the adaptive response in the subsequent trial was limited to the deceleration period. After repeated exposure to the same error, the acceleration period commands also adapted, and exhibited resistance to forgetting during set-breaks. In contrast, the deceleration period commands adapted more rapidly, but suffered from poor retention during these same breaks. State-space models suggested that acceleration and deceleration periods were supported by a shared adaptive state which re-aimed the saccade, as well as two separate processes which resembled a two-state model: one that learned slowly and contributed primarily via acceleration period commands, and another that learned rapidly but contributed primarily via deceleration period commands.


Saccades and handedness interact to affect scene memory.

  • Timothy M Ellmore‎ et al.
  • PeerJ‎
  • 2018‎

Repetitive saccades benefit memory when executed before retrieval, with greatest effects for episodic memory in consistent-handers. Questions remain including how saccades affect scene memory, an important visual component of episodic memory. The present study tested how repetitive saccades affect working and recognition memory for novel scenes. Handedness direction (left-right) and degree (strong/consistent vs. mixed/inconsistent) was measured by raw and absolute laterality quotients respectively from an 8-question handedness inventory completed by 111 adults. Each then performed either 30 s of repetitive horizontal saccades or fixation before or after tasks of scene working memory and scene recognition. Regression with criterion variables of overall percent correct accuracy and d-prime sensitivity showed that when saccades were made before working memory, there was better overall accuracy as a function of increased direction but not degree of handedness. Subjects who made saccades before working memory also performed worse during subsequent recognition memory, while subjects who fixated or made saccades after the working memory task performed better. Saccades made before recognition resulted in recognition accuracy that was better (Cohen's d = 0.3729), but not significantly different from fixation before recognition. The results demonstrate saccades and handedness interact to affect scene memory with larger effects on encoding than recognition. Saccades before scene encoding in working memory are detrimental to short- and long-term memory, especially for those who are not consistently right-handed, while saccade execution before scene recognition does not appear to benefit recognition accuracy. The findings are discussed with respect to theories of interhemispheric interaction and control of visuospatial attention.


Effects of saccades on visual processing in primate MSTd.

  • Shaun L Cloherty‎ et al.
  • Vision research‎
  • 2010‎

In surveying their visual environment, primates, including humans make frequent rapid eye movements known as saccades. Saccades result in rapid motion of the retinal image and yet this motion is not perceived. We recorded saccade-related changes in neural activity in the dorsal medial superior temporal area (MSTd) of alert macaque monkeys. We show that the spontaneous activity of neurons in MSTd is modulated around the time of saccades. Some cells show considerable suppression of spontaneous activity, while most show early and significant enhancement. While this modulation of spontaneous activity is variable, the concomitant modulation of neural responses evoked by flashed visual stimuli is uniform and stereotypical - visual responses are suppressed for stimuli presented around the time of saccades and enhanced for stimuli presented afterwards. The combined modulation of spontaneous activity and evoked visual responses likely serves to reduce the detectability of peri-saccadic stimuli and promote the perceptual awareness of visual stimuli between saccades.


Horizontal saccades to dichoptically presented targets of differing disparities.

  • J M Findlay‎ et al.
  • Vision research‎
  • 1993‎

Horizontal saccades were elicited to targets of various disparities displayed dichoptically. When the left eye and right eye targets were in the same hemifield, the resulting saccade demonstrated spatial averaging (42%, where 50% represents perfect averaging) between the left and right eye target positions. When the left eye and right eye targets were in opposite hemifields, the saccade was directed to one of the stimuli and was only minimally influenced by the presence of the other. This pattern is similar to that obtained when saccades are made to double targets, both of which are visible to both eyes. These data are discussed in terms of an ecological role for the global effect.


Spatiotopic updating across saccades in the absence of awareness.

  • Yijun Ge‎ et al.
  • Journal of vision‎
  • 2021‎

Despite the continuously changing visual inputs caused by eye movements, our perceptual representation of the visual world remains remarkably stable. Visual stability has been a major area of interest within the field of visual neuroscience. The early visual cortical areas are retinotopic-organized, and presumably there is a retinotopic to spatiotopic transformation process that supports the stable representation of the visual world. In this study, we used a cross-saccadic adaptation paradigm to show that both the orientation adaptation and face gender adaptation could still be observed at the same spatiotopic (but different retinotopic) locations even when the adapting stimuli were rendered invisible. These results suggest that awareness of a visual object is not required for its transformation from the retinotopic to the spatiotopic reference frame.


VOR Gain Is Related to Compensatory Saccades in Healthy Older Adults.

  • Eric R Anson‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Vestibulo-ocular reflex (VOR) gain is well-suited for identifying rotational vestibular dysfunction, but may miss partial progressive decline in age-related vestibular function. Since compensatory saccades might provide an alternative method for identifying subtle vestibular decline, we describe the relationship between VOR gain and compensatory saccades in healthy older adults.


Age dependent normative data of vertical and horizontal reflexive saccades.

  • Susanne Hopf‎ et al.
  • PloS one‎
  • 2018‎

There is some controversy whether or not saccades change with age. This cross-sectional study aims to clarify the characteristics of reflexive saccades at various ages to establish a normative cohort in a standardized set-up. Second objective is to investigate the feasibility of saccadometry in daily ophthalmological practice.


Bayesian and Discriminative Models for Active Visual Perception across Saccades.

  • Divya Subramanian‎ et al.
  • eNeuro‎
  • 2023‎

The brain interprets sensory inputs to guide behavior, but behavior itself disrupts sensory inputs. Perceiving a coherent world while acting in it constitutes active perception. For example, saccadic eye movements displace visual images on the retina and yet the brain perceives visual stability. Because this percept of visual stability has been shown to be influenced by prior expectations, we tested the hypothesis that it is Bayesian. The key prediction was that priors would be used more as sensory uncertainty increases. Humans and rhesus macaques reported whether an image moved during saccades. We manipulated both prior expectations and levels of sensory uncertainty. All psychophysical data were compared with the predictions of Bayesian ideal observer models. We found that humans were Bayesian for continuous judgments. For categorical judgments, however, they were anti-Bayesian: they used their priors less with greater uncertainty. We studied this categorical result further in macaques. The animals' judgments were similarly anti-Bayesian for sensory uncertainty caused by external, image noise, but Bayesian for uncertainty due to internal, motor-driven noise. A discriminative learning model explained the anti-Bayesian effects. We conclude that active vision uses both Bayesian and discriminative models depending on task requirements (continuous vs categorical) and the source of uncertainty (image noise vs motor-driven noise). In the context of previous knowledge about the saccadic system, our results provide an example of how the comparative analysis of Bayesian versus non-Bayesian models of perception offers novel insights into underlying neural organization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: