Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,304 papers

Underwater Robotics Competitions: The European Robotics League Emergency Robots Experience With FeelHippo AUV.

  • Matteo Franchi‎ et al.
  • Frontiers in robotics and AI‎
  • 2020‎

Underwater robots are nowadays employed for many different applications; during the last decades, a wide variety of robotic vehicles have been developed by both companies and research institutes, different in shape, size, navigation system, and payload. While the market needs to constitute the real benchmark for commercial vehicles, novel approaches developed during research projects represent the standard for academia and research bodies. An interesting opportunity for the performance comparison of autonomous vehicles lies in robotics competitions, which serve as an useful testbed for state-of-the-art underwater technologies and a chance for the constructive evaluation of strengths and weaknesses of the participating platforms. In this framework, over the last few years, the Department of Industrial Engineering of the University of Florence participated in multiple robotics competitions, employing different vehicles. In particular, in September 2017 the team from the University of Florence took part in the European Robotics League Emergency Robots competition held in Piombino (Italy) using FeelHippo AUV, a compact and lightweight Autonomous Underwater Vehicle (AUV). Despite its size, FeelHippo AUV possesses a complete navigation system, able to offer good navigation accuracy, and diverse payload acquisition and analysis capabilities. This paper reports the main field results obtained by the team during the competition, with the aim of showing how it is possible to achieve satisfying performance (in terms of both navigation precision and payload data acquisition and processing) even with small-size vehicles such as FeelHippo AUV.


Robotics in Massage: A Systematic Review.

  • Juan Yang‎ et al.
  • Health services research and managerial epidemiology‎
  • 2024‎

Over the past few years, a growing number of studies have explored massage robots. However, to date, a dedicated systematic review focused solely on robot-assisted massage has not been conducted.


Robotics in Dentistry: A Narrative Review.

  • Lipei Liu‎ et al.
  • Dentistry journal‎
  • 2023‎

Robotics is progressing rapidly. The aim of this study was to provide a comprehensive overview of the basic and applied research status of robotics in dentistry and discusses its development and application prospects in several major professional fields of dentistry.


The Impact of Early Robotics Education on Students' Understanding of Coding, Robotics Design, and Interest in Computing Careers.

  • Gisele Ragusa‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Early robotics education has been sparsely researched, especially for children in elementary education. This research pertains to an early education study that introduced robotics design and programming to children in early education with the purpose of increasing their robotics design knowledge, improving their coding skills, and inspiring their aspirations for future careers. It represents a seven-year study of students ages seven through ten years in a large urban school district. The study engaged a pre-post program comparison of the robotics and coding intervention that focused on children's improved understanding of robotics in addition to their career aspirations. The study resulted in increases in the participating students' understanding of robotics design as well as improved coding skills in robotics contexts. Furthermore, the study also led to increases in the students' career aspirations toward computing fields.


Opto-fluidically multiplexed assembly and micro-robotics.

  • Elena Erben‎ et al.
  • Light, science & applications‎
  • 2024‎

Techniques for high-definition micromanipulations, such as optical tweezers, hold substantial interest across a wide range of disciplines. However, their applicability remains constrained by material properties and laser exposure. And while microfluidic manipulations have been suggested as an alternative, their inherent capabilities are limited and further hindered by practical challenges of implementation and control. Here we show that the iterative application of laser-induced, localized flow fields can be used for the relative positioning of multiple micro-particles, irrespectively of their material properties. Compared to the standing theoretical proposal, our method keeps particles mobile, and we show that their precision manipulation is non-linearly accelerated via the multiplexing of temperature stimuli below the heat diffusion limit. The resulting flow fields are topologically rich and mathematically predictable. They represent unprecedented microfluidic control capabilities that are illustrated by the actuation of humanoid micro-robots with up to 30 degrees of freedom, whose motions are sufficiently well-defined to reliably communicate personal characteristics such as gender, happiness and nervousness. Our results constitute high-definition micro-fluidic manipulations with transformative potential for assembly, micro-manufacturing, the life sciences, robotics and opto-hydraulically actuated micro-factories.


Brain-Machine Neurofeedback: Robotics or Electrical Stimulation?

  • Robert Guggenberger‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17-21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = -0.027 to -0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.


Current State of Robotics in Interventional Radiology.

  • Ghazal Najafi‎ et al.
  • Cardiovascular and interventional radiology‎
  • 2023‎

As a relatively new specialty with a minimally invasive nature, the field of interventional radiology is rapidly growing. Although the application of robotic systems in this field shows great promise, such as with increased precision, accuracy, and safety, as well as reduced radiation dose and potential for teleoperated procedures, the progression of these technologies has been slow. This is partly due to the complex equipment with complicated setup procedures, the disruption to theatre flow, the high costs, as well as some device limitations, such as lack of haptic feedback. To further assess these robotic technologies, more evidence of their performance and cost-effectiveness is needed before their widespread adoption within the field. In this review, we summarise the current progress of robotic systems that have been investigated for use in vascular and non-vascular interventions.


Social Robotics in Therapy of Apraxia of Speech.

  • José Carlos Castillo‎ et al.
  • Journal of healthcare engineering‎
  • 2018‎

Apraxia of speech is a motor speech disorder in which messages from the brain to the mouth are disrupted, resulting in an inability for moving lips or tongue to the right place to pronounce sounds correctly. Current therapies for this condition involve a therapist that in one-on-one sessions conducts the exercises. Our aim is to work in the line of robotic therapies in which a robot is able to perform partially or autonomously a therapy session, endowing a social robot with the ability of assisting therapists in apraxia of speech rehabilitation exercises. Therefore, we integrate computer vision and machine learning techniques to detect the mouth pose of the user and, on top of that, our social robot performs autonomously the different steps of the therapy using multimodal interaction.


Robotics and cybersurgery in ophthalmology: a current perspective.

  • Munirah Alafaleq‎
  • Journal of robotic surgery‎
  • 2023‎

Ophthalmology is one of the most enriched fields, allowing the domain of artificial intelligence to be part of its point of interest in scientific research. The requirement of specialized microscopes and visualization systems presents a challenge to adapting robotics in ocular surgery. Cyber-surgery has been used in other surgical specialties aided by Da Vinci robotic system. This study focuses on the current perspective of using robotics and cyber-surgery in ophthalmology and highlights factors limiting their progression. A review of literature was performed with the aid of Google Scholar, Pubmed, CINAHL, MEDLINE (N.H.S. Evidence), Cochrane, AMed, EMBASE, PsychINFO, SCOPUS, and Web of Science. Keywords: Cybersurgery, Telesurgery, ophthalmology robotics, Da Vinci robotic system, artificial intelligence in ophthalmology, training on robotic surgery, ethics of the use of robots in medicine, legal aspects, and economics of cybersurgery and robotics. 150 abstracts were reviewed for inclusion, and 68 articles focusing on ophthalmology were included for full-text review. Da Vinci Surgical System has been used to perform a pterygium repair in humans and was successful in ex vivo corneal, strabismus, amniotic membrane, and cataract surgery. Gamma Knife enabled effective treatment of uveal melanoma. Robotics used in ophthalmology were: Da Vinci Surgical System, Intraocular Robotic Interventional Surgical System (IRISS), Johns Hopkins Steady-Hand Eye Robot and smart instruments, and Preceyes' B.V. Cybersurgery is an alternative to overcome distance and the shortage of surgeons. However, cost, availability, legislation, and ethics are factors limiting the progression of these fields. Robotic and cybersurgery in ophthalmology are still in their niche. Cost-effective studies are needed to overcome the delay. Technologies, such as 5G and Tactile Internet, are required to help reduce resource scheduling problems in cybersurgery. In addition, prototype development and the integration of artificial intelligence applications could further enhance the safety and precision of ocular surgery.


Robotics in Nursing: Protocol for a Scoping Review.

  • Elizabeth Mirekuwaa Darko‎ et al.
  • JMIR research protocols‎
  • 2023‎

Globally, health care systems are challenged with the shortage of health care professionals, particularly nurses. The decline in the nursing workforce is primarily attributed to an aging population, increased demand for health care services, and a shortage of qualified nurses. Stressful working conditions have also increased the physical and emotional demands and perceptions of burnout, leading to attrition among nurses. Robotics has the potential to alleviate some of the workforce challenges by augmenting and supporting nurses in their roles; however, the impact of robotics on nurses is an understudied topic, and limited literature exists.


The Measure of Motion Similarity for Robotics Application.

  • Teresa Zielinska‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

A new measure of motion similarity has been proposed. The formulation of this measure is presented and its logical basis is described. Unlike in most of other methods, the measure enables easy determination of the instantaneous synergies of the motion of body parts. To demonstrate how to use the measure, the data describing human movement is used. The movement is recorded using a professional motion capture system. Two different cases of non-periodic movements are discussed: stepping forward and backward, and returning to a stable posture after an unexpected thrust to the side (hands free or tied). This choice enables the identification of synergies in slow dynamics (stepping) and in fast dynamics (push recovery). The trajectories of motion similarity measures are obtained for point masses of the human body. The interpretation of these trajectories in relation to motion events is discussed. In addition, ordinary motion trajectories and footprints are shown in order to better illustrate the specificity of the discussed examples. The article ends with a discussion and conclusions.


Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery.

  • Youri P A Tan‎ et al.
  • Frontiers in surgery‎
  • 2018‎

Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.


Robotics to enable older adults to remain living at home.

  • Alan J Pearce‎ et al.
  • Journal of aging research‎
  • 2012‎

Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving.


Dancing With Parkinson's Disease: The SI-ROBOTICS Study Protocol.

  • Roberta Bevilacqua‎ et al.
  • Frontiers in public health‎
  • 2021‎

Introduction: Parkinson's disease (PD) is one of the most frequent causes of disability among older people, characterized by motor disorders, rigidity, and balance problems. Recently, dance has started to be considered an effective exercise for people with PD. In particular, Irish dancing, along with tango and different forms of modern dance, may be a valid strategy to motivate people with PD to perform physical activity. The present protocol aims to implement and evaluate a rehabilitation program based on a new system called "SI-ROBOTICS," composed of multiple technological components, such as a social robotic platform embedded with an artificial vision setting, a dance-based game, environmental and wearable sensors, and an advanced AI reasoner module. Methods and Analysis: For this study, 20 patients with PD will be recruited. Sixteen therapy sessions of 50 min will be conducted (two training sessions per week, for 8 weeks), involving two patients at a time. Evaluation will be primarily focused on the acceptability of the SI-ROBOTICS system. Moreover, the analysis of the impact on the patients' functional status, gait, balance, fear of falling, cardio-respiratory performance, motor symptoms related to PD, and quality of life, will be considered as secondary outcomes. The trial will start in November 2021 and is expected to end by April 2022. Discussions: The study aims to propose and evaluate a new approach in PD rehabilitation, focused on the use of Irish dancing, together with a new technological system focused on helping the patient perform the dance steps and on collecting kinematic and performance parameters used both by the physiotherapist (for the evaluation and planning of the subsequent sessions) and by the system (to outline the levels of difficulty of the exercise). Ethics and Dissemination: The study was approved by the Ethics Committee of the IRCCS INRCA. It was recorded in ClinicalTrials.gov on the number NCT05005208. The study findings will be used for publication in peer-reviewed scientific journals and presentations in scientific meetings.


A psychology based approach for longitudinal development in cognitive robotics.

  • J Law‎ et al.
  • Frontiers in neurorobotics‎
  • 2014‎

A major challenge in robotics is the ability to learn, from novel experiences, new behavior that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behavior of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behavior, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinal experiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eye integrated reaching and basic manipulation of objects. This approach offers promise for further fast and effective sensory-motor learning techniques for robotic learning.


Robotics in Interventional Radiology: Review of Current and Future Applications.

  • Carolina Lanza‎ et al.
  • Technology in cancer research & treatment‎
  • 2023‎

This review is a brief overview of the current status and the potential role of robotics in interventional radiology. Literature published in the last decades, with an emphasis on the last 5 years, was reviewed and the technical developments in robotics and navigational systems using CT-, MR- and US-image guidance were analyzed. Potential benefits and disadvantages of their current and future use were evaluated. The role of fusion imaging modalities and artificial intelligence was analyzed in both percutaneous and endovascular procedures. A few hundred articles describing results of single or several systems were included in our analysis.


Augmented Reality Meets Artificial Intelligence in Robotics: A Systematic Review.

  • Zahraa Bassyouni‎ et al.
  • Frontiers in robotics and AI‎
  • 2021‎

Recently, advancements in computational machinery have facilitated the integration of artificial intelligence (AI) to almost every field and industry. This fast-paced development in AI and sensing technologies have stirred an evolution in the realm of robotics. Concurrently, augmented reality (AR) applications are providing solutions to a myriad of robotics applications, such as demystifying robot motion intent and supporting intuitive control and feedback. In this paper, research papers combining the potentials of AI and AR in robotics over the last decade are presented and systematically reviewed. Four sources for data collection were utilized: Google Scholar, Scopus database, the International Conference on Robotics and Automation 2020 proceedings, and the references and citations of all identified papers. A total of 29 papers were analyzed from two perspectives: a theme-based perspective showcasing the relation between AR and AI, and an application-based analysis highlighting how the robotics application was affected. These two sections are further categorized based on the type of robotics platform and the type of robotics application, respectively. We analyze the work done and highlight some of the prevailing limitations hindering the field. Results also explain how AR and AI can be combined to solve the model-mismatch paradigm by creating a closed feedback loop between the user and the robot. This forms a solid base for increasing the efficiency of the robotic application and enhancing the user's situational awareness, safety, and acceptance of AI robots. Our findings affirm the promising future for robust integration of AR and AI in numerous robotic applications.


Educational Robotics for children with neurodevelopmental disorders: A systematic review.

  • Monica Pivetti‎ et al.
  • Heliyon‎
  • 2020‎

This paper aims to provide a critical review of the studies dealing with Educational Robotics for children with Neurodevelopmental Disorders. We aimed to investigate whether in the literature there is a sound evidence that activities with robots improve the abilities and performances of children with special needs. This paper explores the methodological aspects as well as the outcomes of the selected studies to provide a clear picture of the state-of-the-art on this topic. After a systematic search in the online database via keyword searches, 15 scientific papers were included in this review. We applied strict selection criteria limiting our review only to papers reporting educational robotics activities with children (from 3 up to 19 years old) with a diagnosis of neurodevelopmental disorders, in which the children had the opportunity to somehow program the behaviours of real robots. The majority of experiences showed improvements in the participants' performance or abilities, their engagement and involvement, communication/interaction with peers, during robotics sessions. Some studies reported mixed results, calling for the need to carefully design the objective and the related activities of each experience.


Approaches for Efficiently Detecting Frontier Cells in Robotics Exploration.

  • Phillip Quin‎ et al.
  • Frontiers in robotics and AI‎
  • 2021‎

Many robot exploration algorithms that are used to explore office, home, or outdoor environments, rely on the concept of frontier cells. Frontier cells define the border between known and unknown space. Frontier-based exploration is the process of repeatedly detecting frontiers and moving towards them, until there are no more frontiers and therefore no more unknown regions. The faster frontier cells can be detected, the more efficient exploration becomes. This paper proposes several algorithms for detecting frontiers. The first is called Naïve Active Area (NaïveAA) frontier detection and achieves frontier detection in constant time by only evaluating the cells in the active area defined by scans taken. The second algorithm is called Expanding-Wavefront Frontier Detection (EWFD) and uses frontiers from the previous timestep as a starting point for searching for frontiers in newly discovered space. The third approach is called Frontier-Tracing Frontier Detection (FTFD) and also uses the frontiers from the previous timestep as well as the endpoints of the scan, to determine the frontiers at the current timestep. Algorithms are compared to state-of-the-art algorithms such as Naïve, WFD, and WFD-INC. NaïveAA is shown to operate in constant time and therefore is suitable as a basic benchmark for frontier detection algorithms. EWFD and FTFD are found to be significantly faster than other algorithms.


Bridging Neuroscience and Robotics: Spiking Neural Networks in Action.

  • Alexander Jones‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Robots are becoming increasingly sophisticated in the execution of complex tasks. However, an area that requires development is the ability to act in dynamically changing environments. To advance this, developments have turned towards understanding the human brain and applying this to improve robotics. The present study used electroencephalogram (EEG) data recorded from 54 human participants whilst they performed a two-choice task. A build-up of motor activity starting around 400 ms before response onset, also known as the lateralized readiness potential (LRP), was observed. This indicates that actions are not simply binary processes but rather, response-preparation is gradual and occurs in a temporal window that can interact with the environment. In parallel, a robot arm executing a pick-and-place task was developed. The understanding from the EEG data and the robot arm were integrated into the final system, which included cell assemblies (CAs)-a simulated spiking neural network-to inform the robot to place the object left or right. Results showed that the neural data from the robot simulation were largely consistent with the human data. This neurorobotics study provides an example of how to integrate human brain recordings with simulated neural networks in order to drive a robot.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: