Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Comprehensive bioinformatics analysis of ribonucleoside diphosphate reductase subunit M2(RRM2) gene correlates with prognosis and tumor immunotherapy in pan-cancer.

  • Liyuan Wu‎ et al.
  • Aging‎
  • 2022‎

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby implicating its role as an anti-cancer agent. However, little research has been performed on its role in the prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs (lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients' worse prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for further investigation of the RRM2 gene as a biomarker in predicting immunotherapy's response and therapeutic target.


Sorafenib Inhibits Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in Hepatocellular Carcinoma Cells.

  • Pei-Ming Yang‎ et al.
  • Biomolecules‎
  • 2020‎

The main curative treatments for hepatocellular carcinoma (HCC) are surgical resection and liver transplantation, which only benefits 15% to 25% of patients. In addition, HCC is highly refractory and resistant to cytotoxic chemotherapy. Although several multi-kinase inhibitors, such as sorafenib, regorafenib, and lenvatinib, have been approved for treating advanced HCC, only a short increase of median overall survival in HCC patients was achieved. Therefore, there is an urgent need to design more effective strategies for advanced HCC patients. Human ribonucleotide reductase is responsible for the conversion of ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. In this study, mining the cancer genomics and proteomics data revealed that ribonucleotide reductase regulatory subunit M2 (RRM2) serves as a prognosis biomarker and a therapeutic target for HCC. The RNA sequencing (RNA-Seq) analysis and public microarray data mining found that RRM2 was a novel molecular target of sorafenib in HCC cells. In vitro experiments validated that sorafenib inhibits RRM2 expression in HCC cells, which is positively associated with the anticancer activity of sorafenib. Although both RRM2 knockdown and sorafenib induced autophagy in HCC cells, restoration of RRM2 expression did not rescue HCC cells from sorafenib-induced autophagy and growth inhibition. However, long-term colony formation assay indicated that RRM2 overexpression partially rescues HCC cells from the cytotoxicity of sorafenib. Therefore, this study identifies that RRM2 is a novel target of sorafenib, partially contributing to its anticancer activity in HCC cells.


Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer.

  • Y-Y Hsieh‎ et al.
  • Cell death discovery‎
  • 2016‎

Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2.


RRM2 expression in different molecular subtypes of breast cancer and its prognostic significance.

  • Manar Ahmed Abdel-Rahman‎ et al.
  • Diagnostic pathology‎
  • 2022‎

Breast cancer is one of the most common types of cancer. Ribonucleotide reductase (RNR) is a heterodimeric tetramer consisting of two Ribonucleoside-diphosphate reductase large subunits (RRM1) and two Ribonucleoside-diphosphate reductase small subunits (RRM2). RRM2 is the building subunit of RNR that is important for synthesis of Deoxynucleoside triphosphate (dNTP) during S phase of cell cycle during DNA replication. RRM2 is associated with poor prognosis in lung and colorectal cancer. In breast cancer, increased RRM2 protein level is strongly correlated with large tumour size, positive lymph node and relapse. In this study, we aimed to study expression of RRM2 in breast cancer and to correlate it with different clinicopathological parameters in Egyptian women.


Mec1 Is Activated at the Onset of Normal S Phase by Low-dNTP Pools Impeding DNA Replication.

  • Romain Forey‎ et al.
  • Molecular cell‎
  • 2020‎

The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G1 phase may not be sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use suboptimal dNTP pools to detect the onset of DNA replication and activate the Mec1-Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.


Ligation of newly replicated DNA controls the timing of DNA mismatch repair.

  • Gloria X Reyes‎ et al.
  • Current biology : CB‎
  • 2021‎

Mismatch repair (MMR) safeguards genome stability through recognition and excision of DNA replication errors.1-4 How eukaryotic MMR targets the newly replicated strand in vivo has not been established. MMR reactions reconstituted in vitro are directed to the strand containing a preexisting nick or gap,5-8 suggesting that strand discontinuities could act as discrimination signals. Another candidate is the proliferating cell nuclear antigen (PCNA) that is loaded at replication forks and is required for the activation of Mlh1-Pms1 endonuclease.7-9 Here, we discovered that overexpression of DNA ligase I (Cdc9) in Saccharomyces cerevisiae causes elevated mutation rates and increased chromatin-bound PCNA levels and accumulation of Pms1 foci that are MMR intermediates, suggesting that premature ligation of replication-associated nicks interferes with MMR. We showed that yeast Pms1 expression is mainly restricted to S phase, in agreement with the temporal coupling between MMR and DNA replication.10 Restricting Pms1 expression to the G2/M phase caused a mutator phenotype that was exacerbated in the absence of the exonuclease Exo1. This mutator phenotype was largely suppressed by increasing the lifetime of replication-associated DNA nicks, either by reducing or delaying Cdc9 ligase activity in vivo. Therefore, Cdc9 dictates a window of time for MMR determined by transient DNA nicks that direct the Mlh1-Pms1 in a strand-specific manner. Because DNA nicks occur on both newly synthesized leading and lagging strands,11 these results establish a general mechanism for targeting MMR to the newly synthesized DNA, thus preventing the accumulation of mutations that underlie the development of human cancer.


Predictive and Prognostic Value of TUBB3, RRM1, APE1, and Survivin Expression in Chemotherapy-Receiving Patients with Advanced Non‑Small Cell Lung Cancer.

  • Pritsana Raungrut‎ et al.
  • Asian Pacific journal of cancer prevention : APJCP‎
  • 2023‎

This study aimed to evaluate the expression of class III β-tubulin (TUBB3), ribonucleoside-diphosphate reductase 1 (RRM1), apurinic/apyrimidinic endonuclease 1 (APE1), and survivin in patients with advanced non-small cell lung cancer (NSCLC) to predict response to chemotherapy.


Endosomal trafficking and DNA damage checkpoint kinases dictate survival to replication stress by regulating amino acid uptake and protein synthesis.

  • Arta Ajazi‎ et al.
  • Developmental cell‎
  • 2021‎

Atg6Beclin 1 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6Beclin 1-Vps38UVRAG-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process. An impaired AA uptake triggers activation of Gcn2, which attenuates protein synthesis by phosphorylating eIF2α. Mec1Atr-Rad53Chk1/Chk2 activation during replication stress further hinders translation efficiency by counteracting eIF2α dephosphorylation through Glc7PP1. AA shortage-induced hyperphosphorylation of eIF2α inhibits the synthesis of 65 stress response proteins, thus resulting in cell sensitization to replication stress, while TORC1 promotes cell survival. Our findings reveal an integrated network mediated by endosomal trafficking, translational control pathways, and checkpoint kinases linking AA availability to the response to replication stress.


Comparative Proteomic Analysis Identifies Key Metabolic Regulators of Gemcitabine Resistance in Pancreatic Cancer.

  • Qingxiang Lin‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2022‎

Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current-based MS1 workflow to quantify ∼6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and 'drug response' mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.


Prediction of the Impact of Deleterious Nonsynonymous Single Nucleotide Polymorphisms on the Human RRM2B Gene: A Molecular Modeling Study.

  • Chaimaa Ait El Cadi‎ et al.
  • BioMed research international‎
  • 2020‎

RRM2B gene encodes ribonucleoside-diphosphate reductase subunit M2 B, the p53-inducible small subunit (p53R2) of ribonucleotide reductase (RNR), an enzyme catalyzing dNTP synthesis for mitochondrial DNA. Defects in this gene may cause severe mitochondrial disease affecting mainly the nervous system. This study is aimed at examining the effect of deleterious nonsynonymous SNP (nsSNP) on the structure of the RRM2B protein, using a variety of prediction tools followed by a molecular modeling analysis. After using 13 algorithms, 19 nsSNPs were predicted deleterious. Among these variants, 18 decreased the protein stability and 16 were localized in very highly conserved regions. Protein 3D structure analysis showed that 18 variants changed amino acid interactions. These results concur with what has been found in experimental trials; 7 deleterious nsSNPs were previously reported in patients suffering from genetic disorders affecting the nervous system. Thus, our study will provide useful information to design more efficient and fast genetic tests to find RRM2B gene mutations.


A Screen Using iPSC-Derived Hepatocytes Reveals NAD+ as a Potential Treatment for mtDNA Depletion Syndrome.

  • Ran Jing‎ et al.
  • Cell reports‎
  • 2018‎

Patients with mtDNA depletion syndrome 3 (MTDPS3) often die as children from liver failure caused by severe reduction in mtDNA content. The identification of treatments has been impeded by an inability to culture and manipulate MTDPS3 primary hepatocytes. Here we generated DGUOK-deficient hepatocyte-like cells using induced pluripotent stem cells (iPSCs) and used them to identify drugs that could improve mitochondrial ATP production and mitochondrial function. Nicotinamide adenine dinucleotide (NAD) was found to improve mitochondrial function in DGUOK-deficient hepatocyte-like cells by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). NAD treatment also improved ATP production in MTDPS3-null rats and in hepatocyte-like cells that were deficient in ribonucleoside-diphosphate reductase subunit M2B (RRM2B), suggesting that it could be broadly effective. Our studies reveal that DGUOK-deficient iPSC-derived hepatocytes recapitulate the pathophysiology of MTDPS3 in culture and can be used to identify therapeutics for mtDNA depletion syndromes.


RNA-DNA hybrids prevent resection at dysfunctional telomeres.

  • Vanessa Borges Pires‎ et al.
  • Cell reports‎
  • 2023‎

At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.


Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle.

  • Marco Graf‎ et al.
  • Cell‎
  • 2017‎

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence.


Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells.

  • Chris Traylen‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2015‎

The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications.


Polyphyllin VII suppresses cell proliferation, the cell cycle and cell migration in colorectal cancer.

  • Cheng Song‎ et al.
  • Oncology letters‎
  • 2021‎

Colorectal cancer (CRC) is one of the most common types of human cancer. However, there is still an urgent need to identify novel treatment strategies for CRC. The present study aimed to validate the potential antitumor effects of polyphyllin VII in CRC. The present study revealed that polyphyllin VII could significantly inhibit CRC proliferation and induce cell cycle arrest and apoptosis. Moreover, the anti-metastatic effect of polyphyllin VII in CRC cells was implicated. Microarray analysis identified that polyphyllin VII could affect multiple protein coding genes and non-coding RNAs. Bioinformatics analysis revealed that polyphyllin VII regulated multiple pathways in CRC, including 'ER to Golgi vesicle-mediated transport', 'response to cAMP', 'Ras protein signal transduction', 'metabolic pathways', 'MAPK signaling pathway' and 'cell cycle'. Protein-Protein Interaction network analysis identified a series of key polyphyllin VII-regulating genes in CRC, including ribonucleoside-diphosphate reductase subunit M2, structural maintenance of chromosomes protein 4 and DNA replication licensing factor MCM4. Finally, the present results demonstrated that these key polyphyllin VII-regulating genes were dysregulated in CRC. Taken together, these results indicated that polyphyllin VII could be a novel antitumor drug for the treatment of CRC.


Identification and characterization of genes required for compensatory growth in Drosophila.

  • Abigail R Gerhold‎ et al.
  • Genetics‎
  • 2011‎

To maintain tissue homeostasis, some organs are able to replace dying cells with additional proliferation of surviving cells. Such proliferation can be localized (e.g., a regeneration blastema) or diffuse (compensatory growth). The relationship between such growth and the growth that occurs during development has not been characterized in detail. Drosophila melanogaster larval imaginal discs can recover from extensive damage, producing normally sized adult organs. Here we describe a system using genetic mosaics to screen for recessive mutations that impair compensatory growth. By generating clones of cells that carry a temperature-sensitive cell-lethal mutation, we conditionally ablate patches of tissue in the imaginal disc and assess the ability of the surviving sister clones to replace the lost tissue. We have used this system together with a modified whole-genome resequencing (WGS) strategy to identify several mutations that selectively compromise compensatory growth. We find specific alleles of bunched (bun) and Ribonucleoside diphosphate reductase large subunit (RnrL) reduce compensatory growth in the imaginal disc. Other genes identified in the screen, including two alleles of Topoisomerase 3-alpha (Top3α), while also required for developmental growth, appear to have an enhanced requirement during compensatory growth. Compensatory growth occurs at a higher rate than normal growth and may therefore have features in common with some types of overgrowth. Indeed, the RnrL allele identified compromises both these types of altered growth and mammalian ribonucleotide reductase and topoisomerases are targets of anticancer drugs. Finally, the approach we describe is applicable to the study of compensatory growth in diverse tissues in Drosophila.


Astaxanthin inhibits gemcitabine-resistant human pancreatic cancer progression through EMT inhibition and gemcitabine resensitization.

  • Tao Yan‎ et al.
  • Oncology letters‎
  • 2017‎

Pancreatic cancer rapidly acquires resistance to chemotherapy resulting in its being difficult to treat. Gemcitabine is the current clinical chemotherapy strategy; however, owing to gemcitabine resistance, it is only able to prolong the life of patients with pancreatic cancer for a limited number of months. Understanding the underlying molecular mechanisms of gemcitabine resistance and selecting a suitable combination of agents for the treatment of pancreatic cancer is required. Astaxanthin (ASX) is able to resensitize gemcitabine-resistant human pancreatic cancer cells (GR-HPCCs) to gemcitabine. ASX was identified to upregulate human equilibrative nucleoside transporter 1 (hENT1) and downregulate ribonucleoside diphosphate reductase (RRM) 1 and 2 to enhance gemcitabine-induced cell death in GR-HPCCs treated with gemcitabine, and also downregulates TWIST1 and ZEB1 to inhibit the gemcitabine-induced epithelial-mesenchymal transition (EMT) phenotype in GR-HPCCs and to mediate hENT1, RRM1 and RRM2. Furthermore, ASX acts through the hypoxia-inducible factor 1α/signal transducer and activator of transcription 3 signaling pathway to mediate TWIST1, ZEB1, hENT1, RRM1 and RRM2, regulating the gemcitabine-induced EMT phenotype and gemcitabine-induced cell death. Co-treatment with ASX and gemcitabine in a tumor xenograft model induced by GR-HPCCs supported the in vitro results. The results of the present study provide a novel therapeutic strategy for the treatment of gemcitabine-resistant pancreatic cancer.


Overexpression of microRNA-620 facilitates the resistance of triple negative breast cancer cells to gemcitabine treatment by targeting DCTD.

  • Chao Wu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Patients with triple negative breast cancer (TNBC) have a poor survival rate following chemotherapy due to drug resistance. Notably, the molecular mechanism of drug resistance remains elusive. Between December 2011 and December 2014, 36 TNBC samples were obtained from Liaocheng People's Hospital. Three gemcitabine-resistant MDA-MB-231 cell lines (MDA-MB-231rGEM1, MDA-MB-231rGEM2 and MDA-MB-231rGEM3) were obtained by exposure of MDA-MB-231 cells to increasing concentrations of gemcitabine for >12 months. Reverse transcription-quantitative polymerase chain reaction was performed to detect the expression levels of specific genes, including microRNA (miR)-620, ATP-binding cassette sub-family B member 1 (ABCB1), ABCC10, cytidine monophosphate kinase, deoxycytidine monophosphate deaminase (DCTD), nucleoside diphosphate kinase 1 (NME1), ribonucleoside-diphosphate reductase large subunit (RRM1) and RRMB2. Western blot analysis was performed to assess the protein expression levels of DCTD. Furthermore, cell proliferation was assessed using a Cell Counting Kit-8 assay and cell apoptosis was detected using an Annexin V/Dead Cell Apoptosis kit. Interactions between miR-620 and DCTD were predicted using TargetScan and detected with the dual luciferase reporter assay. Elevation of miR-620 expression levels were detected in two of the assessed gemcitabine-resistant MDA-MB-231 cell lines compared with MDA-MB-231 cells. Gemcitabine induced significant elevation of miR-620 in MDA-MB-231 cells. An increase of DCTD at mRNA and protein expression levels in MDA-MB-231rGEM1 cells was observed compared with those in MDA-MB-231 cells. Results suggested that DCTD was directly regulated by miR-620. Inhibition of miR-620 and overexpression of DCTD reversed gemcitabine resistance in MDA-MB-231rGEM1 cells via inducing cell apoptosis and cell growth arrest. A negative correlation was identified between miR-620 and DCTD mRNA expression levels in patients with TNBC. The present results demonstrated that overexpression of miR-620 could contribute to the development of gemcitabine resistance in patients with TNBC via the direct downregulation of DCTD.


Occult breast cancer presenting as metastatic adenocarcinoma of unknown primary: clinical presentation, immunohistochemistry, and molecular analysis.

  • Jue Wang‎ et al.
  • Case reports in oncology‎
  • 2012‎

We report a rare presentation of a 66-year-old female with diffuse metastatic adenocarcinoma of unknown primary involving liver, lymphatic system and bone metastases. The neoplastic cells were positive for CK7 and OC125, while negative for CK20, thyroid transcription factor 1, CDX2, BRST-2, chromogranin, synaptophysin, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu). Fluorescence in situ hybridization showed no amplification of the HER2/neu gene. Molecular profiling reported a breast cancer origin with a very high confidence score of 98%. The absence of immunohistochemistry staining for ER, PR, and HER2/neu further classified her cancer as triple-negative breast cancer. Additional studies revealed high expression levels of topoisomerase (Topo) I, androgen receptor, and ribonucleoside-diphosphate reductase large subunit; the results were negative for thymidylate synthase, Topo II-a and O6-methylguanine-DNA methyltransferase. The patient was initially treated with a combination regimen of cisplatin and etoposide, and she experienced a rapid resolution of cancer-related symptoms. Unfortunately, her therapy was complicated by a cerebrovascular accident (CVA), which was thought to be related to cisplatin and high serum mucin. After recovery from the CVA, the patient was successfully treated with second-line chemotherapy based on her tumor expression profile. We highlight the role of molecular profiling in the diagnosis and management of this patient and the implication of personalized chemotherapy in this challenging disease.


Expression of ERCC1, TYMS, TUBB3, RRM1 and TOP2A in patients with esophageal squamous cell carcinoma: A hierarchical clustering analysis.

  • Yongkang Yu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

The aim of the present study was to investigate the correlation between the expression levels of excision repair cross complementing 1 (ERCC1), thymidylate synthase (TYMS), class III β-tubulin (TUBB3), ribonucleoside-diphosphate reductase (RRM1) and topoisomerase IIα (TOP2A) with the clinical characteristics of patients with esophageal squamous cell carcinoma (ESCC). A total of 29 ESCC tissue samples were collected from patients that had not previously received systematic treatment. The expression levels of ERCC1, TYMS, TUBB3, RRM1 and TOP2A were determined using a microarray technique, while Spearman's rank correlation analysis was used to determine the strength of the correlations between the expression levels of the biomarkers and the pathogenesis of esophageal cancer. High expression levels of TYMS and TOP2A were observed in 24% of the samples and high expression levels of TUBB3 and RRM1 were identified in 7% of the samples. Hierarchical clustering analysis of these biomarkers enabled the samples to be grouped. Group 1 patients exhibited low expression levels of TYMS, RRM1 and TOP2A and high expression of ERCC1 and TUBB3, while group 2 samples had low expression levels of ERCC1 and TUBB3 and high expression levels of TYMS, RRM1 and TOP2A. Analysis using Fisher's exact test demonstrated a statistically significant difference in the severity of carcinoma invasion between the two groups (P<0.05), however, no significant differences were identified with regard to the clinical stage or lymphatic metastasis (P>0.05). Therefore, hierarchical clustering analysis indicated that the expression levels of ERCC1, TYMS, TUBB3, RRM1 and TOP2A were closely associated with the clinical characteristics of patients with ESCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: