Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 673 papers

Sputum handling for rheology.

  • Lydia Esteban Enjuto‎ et al.
  • Scientific reports‎
  • 2023‎

The rheology of sputum is viewed as a powerful emerging biophysical marker for monitoring muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). However, there is no unified practice to process sputa from collection to analysis, which can lead to highly variable, and sometimes inconsistent results. The main objective of this study is to bring light into the handling of sputum samples to establish a standardised and robust protocol before rheological measurements. Sputum collected from 22 CF and 10 NCFB adults, was divided into control (vortexed and fresh: non-heated and non-frozen) and three treated conditions (either non-vortexed, heated or frozen). In addition, 6 CF expectorations were used to study the dynamics of ageing over 24 h. Sputum's mechanical properties were measured with a rotational rheometer to obtain their properties at rest, elastic ([Formula: see text]) and viscous moduli ([Formula: see text]), and at the onset of flow, critical deformation ([Formula: see text]) and critical stress ([Formula: see text]). We demonstrate that heating sputum is completely destructive while freezing sputa at [Formula: see text] has no discernible effect on their rheology. We also show that the variability of rheological measurements largely resulted from the sample's macroscopic heterogeneity, and can be greatly reduced by non-destructive vortex homogenisation. Finally, we observed contrasted ageing effects as a fonction of purulence: while the viscoelasticity of purulent samples reduced by half within 6 h after collection, semi-purulent samples did not evolve. These results guide towards a robust unified protocol for simple sputum handling in rheometry. We therefore suggest to vortex and snap freeze sputum samples immediately after collection when direct testing is not possible.


Multiscale rheology of glioma cells.

  • Charlotte Alibert‎ et al.
  • Biomaterials‎
  • 2021‎

Cells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single-cell parallel plates rheometer to probe whole-cell mechanics and optical tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping.


Rheology of Swiss Cheese Fondue.

  • Pascal Bertsch‎ et al.
  • ACS omega‎
  • 2019‎

Cheese fondue is a popular Swiss dish prepared by melting cheese under the addition of wine, starch, and seasoning. The flow behavior or rheology of fondue is crucial for mouthfeel, flavor release, and the tendency of fondue to cling to the bread. Fondue is a complex multiphase system whose rheology is determined by the interactions of its colloidal ingredients. We establish cheese fondue as a water-continuous system with dispersed fat droplets, charged caseins, and starch granules. Irreversible phase separation, a common issue in fondue preparation, may be prevented by addition of a critical minimum starch concentration. Fondue was found to be a shear-thinning yield stress fluid, which is desirable for mouthfeel and facilitates fondue to cling to the bread for consumption. Fondue showed a viscoelastic stress response around the gel point (G' ≈ G″), which is proposed as crucial for the balance of orally perceived gumminess (G') and liquidity (G″). Ethanol addition and lowering pH toward the isoelectric point of casein, as associated with wine addition, decrease fondue viscosity due to a decrease in casein micelle size. Below the isoelectric point of casein, fondue is unstable and phase separates, potentially impeding fondue digestion. Thus, fondue rheology is governed by the complex colloidal interactions within its ingredients, and ultimately determines fondue eating experience.


Rheology of Concentrated Polymer/Ionic Liquid Solutions: An Anomalous Plasticizing Effect and a Universality in Nonlinear Shear Rheology.

  • Zhonghua Liu‎ et al.
  • Polymers‎
  • 2019‎

An anomalous plasticizing effect was observed in polymer/ionic liquid (IL) solutions by applying broad range of rheological techniques. Poly(ethylene oxide)(PEO)/IL solutions exhibit stronger dynamic temperature dependence than pure PEO, which is in conflict with the knowledge that lower-Tg solvent increases the fractional free volume. For poly(methy methacrylate)(PMMA)/IL solutions, the subtle anomaly was detected from the fact that the effective glass transition temperature Tg,eff of PMMA in IL is higher than the prediction of the self-concentration model, while in conventional polymer solutions, Tg,eff follows the original Fox equation. Observations in both solutions reveal retarded segmental dynamics, consistent with a recent simulation result (Macromolecules, 2018, 51, 5336) that polymer chains wrap the IL cations by hydrogen bonding interactions and the segmental unwrapping delays their relaxation. Start-up shear and nonlinear stress relaxation tests of polymer/IL solutions follow a universal nonlinear rheological behavior as polymer melts and solutions, indicating that the segment-cation interaction is not strong enough to influence the nonlinear chain orientation and stretch. The present work may arouse the further theoretical, experimental, and simulation interests in interpreting the effect of complex polymer-IL interaction on the dynamics of polymer/IL solutions.


Unraveling the rheology of inverse vulcanized polymers.

  • Derek J Bischoff‎ et al.
  • Nature communications‎
  • 2023‎

Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.


Studying the aging of Laponite suspensions using extensional rheology.

  • M J Hayes‎ et al.
  • The European physical journal. E, Soft matter‎
  • 2022‎

The effect of aging on the break-up dynamics of Laponite suspensions was studied in an extensional geometry. It was found that samples of increased age undergo stronger necking at the midpoint. The thinning of samples, driven purely by motion of the plates, was compared with standard shear rheology to understand how the dynamics are related to the sample properties. The Laponite suspensions exhibit a growing stress overshoot with monotonically decreasing yield strain as they age. However, it is shown that the thinning curves in extension are only a good indicator of the sample's static yield stress, being insensitive to its yield strain. These measurements suggest that following an initial linear visco-elastic regime, samples accumulate significant plastic deformations prior to the complete yielding of the sample. The implications of this for the importance of assessing changes to the ductile-brittle nature of samples are also discussed.


Ultrasonic Vitrectomy Performance Assessment Using Micro-Extensional Rheology.

  • John C P Hollister‎ et al.
  • Translational vision science & technology‎
  • 2023‎

The purpose of this study was to assess the performance of ultrasonic (US) vitrectomy devices by quantifying and comparing its impact on extracted vitreous properties to conventional pneumatic blade (PB) cutters using micro-extensional rheology. US vitrectomy is a new technology that offers an alternative to PB cutters used in vitreo-retinal surgeries.


Rheology of the Active Cell Cortex in Mitosis.

  • Elisabeth Fischer-Friedrich‎ et al.
  • Biophysical journal‎
  • 2016‎

The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.


Quantifying cell-to-cell variation in power-law rheology.

  • PingGen Cai‎ et al.
  • Biophysical journal‎
  • 2013‎

Among individual cells of the same source and type, the complex shear modulus G(∗) exhibits a large log-normal distribution that is the result of spatial, temporal, and intrinsic variations. Such large distributions complicate the statistical evaluation of pharmacological treatments and the comparison of different cell states. However, little is known about the characteristic features of cell-to-cell variation. In this study, we investigated how this variation depends on the spatial location within the cell and on the actin filament cytoskeleton, the organization of which strongly influences cell mechanics. By mechanically probing fibroblasts arranged on a microarray, via atomic force microscopy, we observed that the standard deviation σ of G(∗) was significantly reduced among cells in which actin filaments were depolymerized. The parameter σ also exhibited a subcellular spatial dependence. Based on our findings regarding the frequency dependence of σ of the storage modulus G('), we proposed two types of cell-to-cell variation in G(') that arise from the purely elastic and the frequency-dependent components in terms of the soft glassy rheology model of cell deformability. We concluded that the latter inherent cell-to-cell variation can be reduced greatly by disrupting actin networks, by probing at locations within the cell nucleus boundaries distant from the cell center, and by measuring at high loading frequencies.


Lipid Saturation and the Rheology of Human Tear Lipids.

  • Georgi As Georgiev‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Elevated levels of acyl chain saturation of meibomian lipids are associated with enhanced tear film (TF) stability in infants to shortened TF breakup time with meibomian gland dysfunction. Thus, the effect of saturation on the surface properties of human TF lipids (TFLs) using a Langmuir surface balance and Brewster angle microscopy was studied. Lipid phase transitions were measured using infrared spectroscopy. The raise in the % of saturation resulted in thicker, and more elastic films at π = 12 mN/m, with the effects being proportional to the saturation level. At the same time, at lower (≤10 mN/m) π, the raise in saturation resulted in an altered spreading and modified structure of TFL layers. The strong impact of saturation on TFL surface properties correlated with a saturation induced increase of the TFL acyl chain order, phase transition temperature, and lipid-lipid interactions. The native TFL order and πmax were significantly greater, compared with native meibum collected from the same individual. Aggregation of lipids on the tear surface due to saturation was not as significant as it was for meibum. Although the surface pressure/area isotherms for TFL were similar for meibum, differences in rheology and phase transition parameters warrant the study of both.


Thin-Film Rheology and Tribology of Imidazolium Ionic Liquids.

  • Xuhui Zhang‎ et al.
  • ACS applied materials & interfaces‎
  • 2023‎

Ionic liquids (ILs) are organic molten salts with low-temperature melting points that hold promise as next-generation environmentally friendly boundary lubricants. This work examines the relationship between tribological and rheological behavior of thin films of five imidazolium ILs using a surface force apparatus to elucidate lubrication mechanisms. When confined to films of a few nanometers, the rheological properties change drastically as a function of the number of confined ion layers; not only the viscosity increases by several orders of magnitude but ILs can also undergo a transition from Newtonian to viscoelastic fluid and to an elastic solid. This behavior can be justified by the confinement-induced formation of supramolecular clusters with long relaxation times. The quantized friction coefficient is explained from the perspective of the strain relaxation via diffusion of these supramolecular clusters, where higher friction correlates with longer relaxation times. A deviation from this behavior is observed only for 1-ethyl-3-methylimidazolium ethylsulfate ([C2C1Im][EtSO4]), characterized by strong hydrogen bonding; this is hypothesized to restrict the reorganization of the confined IL into clusters and hinder (visco)elastic behavior, which is consistent with the smallest friction coefficient measured for this IL. We also investigate the contrasting influence of traces of water on the thin-film rheology and tribology of a hydrophobic IL, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1Im][FAP], and a hydrophilic IL, [C2C1Im][EtSO4]. [C2C1Im][EtSO4] remains Newtonian under both dry and humid conditions and provides the best lubrication, while [C2C1Im][FAP], characterized by a prominent solid-like behavior under both conditions, is a poor lubricant. The results of this study may inspire molecular designs to enable efficient IL lubrication.


Rheology of rounded mammalian cells over continuous high-frequencies.

  • Gotthold Fläschner‎ et al.
  • Nature communications‎
  • 2021‎

Understanding the viscoelastic properties of living cells and their relation to cell state and morphology remains challenging. Low-frequency mechanical perturbations have contributed considerably to the understanding, yet higher frequencies promise to elucidate the link between cellular and molecular properties, such as polymer relaxation and monomer reaction kinetics. Here, we introduce an assay, that uses an actuated microcantilever to confine a single, rounded cell on a second microcantilever, which measures the cell mechanical response across a continuous frequency range ≈ 1-40 kHz. Cell mass measurements and optical microscopy are co-implemented. The fast, high-frequency measurements are applied to rheologically monitor cellular stiffening. We find that the rheology of rounded HeLa cells obeys a cytoskeleton-dependent power-law, similar to spread cells. Cell size and viscoelasticity are uncorrelated, which contrasts an assumption based on the Laplace law. Together with the presented theory of mechanical de-embedding, our assay is generally applicable to other rheological experiments.


The Rheology and Printability of Cartilage Matrix-Only Biomaterials.

  • Emi A Kiyotake‎ et al.
  • Biomolecules‎
  • 2022‎

The potential chondroinductivity from cartilage matrix makes it promising for cartilage repair; however, cartilage matrix-based hydrogels developed thus far have failed to match the mechanical performance of native cartilage or be bioprinted without adding polymers for reinforcement. There is a need for cartilage matrix-based hydrogels with robust mechanical performance and paste-like precursor rheology for bioprinting/enhanced surgical placement. In the current study, our goals were to increase hydrogel stiffness and develop the paste-like precursor/printability of our methacryl-modified solubilized and devitalized cartilage (MeSDVC) hydrogels. We compared two methacryloylating reagents, methacrylic anhydride (MA) and glycidyl methacrylate (GM), and varied the molar excess (ME) of MA from 2 to 20. The MA-modified MeSDVCs had greater methacryloylation than GM-modified MeSDVC (20 ME). While GM and most of the MA hydrogel precursors exhibited paste-like rheology, the 2 ME MA and GM MeSDVCs had the best printability (i.e., shape fidelity, filament collapse). After crosslinking, the 2 ME MA MeSDVC had the highest stiffness (1.55 ± 0.23 MPa), approaching the modulus of native cartilage, and supported the viability/adhesion of seeded cells for 15 days. Overall, the MA (2 ME) improved methacryloylation, hydrogel stiffness, and printability, resulting in a stand-alone MeSDVC printable biomaterial. The MeSDVC has potential as a future bioink and has future clinical relevance for cartilage repair.


Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.

  • Erin L Baker‎ et al.
  • Biophysical journal‎
  • 2009‎

Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating ECM stiffness does not significantly affect the intracellular mechanical state when cells are attached to two-dimensional (2D) matrices. Switching from 2D to 3D matrices induces an order-of-magnitude shift in intracellular effective creep compliance and apparent elastic modulus. However, for a given matrix stiffness, partial blocking of beta1 integrins mitigates the shift in intracellular mechanical state that is invoked by switching from a 2D to 3D matrix architecture. This finding suggests that the increased cell-matrix engagement inherent to a 3D matrix architecture may contribute to differences observed in viscoelastic properties between cells attached to 2D matrices and cells embedded within 3D matrices. In total, our observations show that ECM stiffness and architecture can strongly influence the intracellular mechanical state of cancer cells.


Pectin as Rheology Modifier of a Gelatin-Based Biomaterial Ink.

  • Anna Lapomarda‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

Gelatin is a natural biopolymer extensively used for tissue engineering applications due to its similarities to the native extracellular matrix. However, the rheological properties of gelatin formulations are not ideal for extrusion-based bioprinting. In this work, we present an approach to improve gelatin bioprinting performances by using pectin as a rheology modifier of gelatin and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as a gelatin-pectin crosslinking agent. The preparation of gelatin-pectin formulations is initially optimized to obtain homogenous gelatin-pectin gels. Since the use of GPTMS requires a drying step to induce the completion of the crosslinking reaction, microporous gelatin-pectin-GPTMS sponges are produced through freeze-drying, and the intrinsic properties of gelatin-pectin-GPTMS networks (e.g., porosity, pore size, degree of swelling, compressive modulus, and cell adhesion) are investigated. Subsequently, rheological investigations together with bioprinting assessments demonstrate the key role of pectin in increasing the viscosity and the yield stress of low viscous gelatin solutions. Water stable, three-dimensional, and self-supporting gelatin-pectin-GPTMS scaffolds with interconnected micro- and macroporosity are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The proposed biofabrication approach does not require any additional temperature controller to further modulate the rheological properties of gelatin solutions and it could furthermore be extended to improve the bioprintability of other biopolymers.


Clinically feasible method for assessing leukocyte rheology in whole blood.

  • Riha Shimizu‎ et al.
  • Heart and vessels‎
  • 2020‎

This study reports a novel method for assessment of leukocyte rheological activation with a new designed microchannel array chip to mimic the human microvascular network for microchannel array flow analysis (MCFAN). Study subjects were 79 healthy volunteers and 42 patients with type 2 diabetes mellitus (DM) and 36 patients with acute coronary syndrome (ACS). Using the anticoagulants heparin and ethylene-diamine-tetraacetic acid (EDTA)-2Na which inhibits platelets and leukocytes by chelating Ca2+, we were able to quantify leukocyte rheological activation by the subtraction of passage time of blood treated with both heparin and EDTA-2Na from that of blood treated with heparin only. We confirmed that passage times of whole blood with heparin + EDTA-2Na were always shorter than those of whole blood with only heparin in healthy subjects and patients with DM or ACS under suction pressures of - 30 cmH2O. There was a significant correlation between delta whole blood passage time {(heparin tube) - (EDTA-2Na + heparin)} and serum levels of myeloperoxidase and adhesive leukocyte number, respectively, even in blood from patients with DM or ACS, who suffered from inflammation. In conclusion we have developed a clinically feasible method for assessing leukocyte rheological activation in whole blood in ex vivo.


Rheology predicts sputum eosinophilia in patients with muco-obstructive lung diseases.

  • Mathilde Volpato‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Mucus is known to play a pathogenic role in muco-obstructive lung diseases, but little is known about the determinants of mucus rheology. The purpose of this study is to determine which sputum components influence sputum rheology in patients with muco-obstructive lung diseases.


Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures.

  • Kris Noel Dahl‎ et al.
  • Biophysical journal‎
  • 2005‎

Force-induced changes in genome expression as well as remodeling of nuclear architecture in development and disease motivate a deeper understanding of nuclear mechanics. Chromatin and green fluorescent protein-lamin B dynamics were visualized in a micropipette aspiration of isolated nuclei, and both were shown to contribute to viscoelastic properties of the somatic cell nucleus. Reversible swelling by almost 200% in volume, with changes in salt, demonstrates the resilience and large dilational capacity of the nuclear envelope, nucleoli, and chromatin. Swelling also proves an effective way to separate the mechanical contributions of nuclear elements. In unswollen nuclei, chromatin is a primary force-bearing element, whereas swollen nuclei are an order of magnitude softer, with the lamina sustaining much of the load. In both cases, nuclear deformability increases with time, scaling as a power law-thus lacking any characteristic timescale-when nuclei are either aspirated or indented by atomic force microscopy. The nucleus is stiff and resists distortion at short times, but it softens and deforms more readily at longer times. Such results indicate an essentially infinite spectrum of timescales for structural reorganization, with implications for regulating genome expression kinetics.


Rheology of debris flow materials is controlled by the distance from jamming.

  • Robert Kostynick‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ([Formula: see text]) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of [Formula: see text] that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, [Formula: see text], where the jamming fraction [Formula: see text] is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on [Formula: see text], our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows.


Melt rheology and extrudate swell properties of talc filled polyethylene compounds.

  • Adib Kalantar Mehrjerdi‎ et al.
  • Heliyon‎
  • 2020‎

An experimental study of high-density polyethylene (HDPE) composites filled with talc (0-15 wt.%) was carried out to investigate the rheological properties. The apparent melt viscosity, melt density, and die-swell ratio (B) of the composites were measured at constant shear stress and constant shear rate by using a melt flow indexer and capillary rheometer. The experimental conditions were set to a temperature range from 190 to 220 °C for both apparatuses whereas a load range from 5 to 12.16 kg was selected for melt flow indexer and shear rate range from 1 to 10000 s-1 for capillary rheometer. The initial study showed that the talc particulates did not influence the melt viscosity compared with the neat HDPE but decreased the elasticity of the polymer system. The HDPE/talc systems obeyed power-law model in shear stress-shear rate variations and were shear thinning, meanwhile, the die-swell increased with an increased wall shear rate and shear stress. The melt density of the composites increased linearly with an increase of the filler weight fraction and decreased with the increase of the testing temperature. The talc-HDPE composites showed compressible in the molten state.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: