Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 342 papers

SNAP25 expression in mammalian retinal horizontal cells.

  • Arlene A Hirano‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

Horizontal cells mediate inhibitory feedforward and feedback lateral interactions in the outer retina at photoreceptor terminals and bipolar cell dendrites; however, the mechanisms that underlie synaptic transmission from mammalian horizontal cells are poorly understood. The localization of a vesicular γ-aminobutyric acid (GABA) transporter (VGAT) to horizontal cell processes in primate and rodent retinae suggested that mammalian horizontal cells release transmitter in a vesicular manner. Toward determining whether the molecular machinery for vesicular transmitter release is present in horizontal cells, we investigated the expression of SNAP25 (synaptosomal-associated protein of 25 kDa), a key SNARE protein, by immunocytochemistry with cell type-specific markers in the retinae of mouse, rat, rabbit, and monkey. Different commercial antibodies to SNAP25 were tested on vertical sections of retina. We report the robust expression of SNAP25 in both plexiform layers. Double labeling with SNAP25 and calbindin antibodies demonstrated that horizontal cell processes and their endings in photoreceptor triad synapses were strongly labeled for both proteins in mouse, rat, rabbit, and monkey retinae. Double labeling with parvalbumin antibodies in monkey retina verified SNAP25 immunoreactivity in all horizontal cells. Pre-embedding immunoelectron microscopy in rabbit retina confirmed expression of SNAP25 in lateral elements within photoreceptor triad synapses. The SNAP25 immunoreactivity in the plexiform layers and outer nuclear layer fell into at least three patterns depending on the antibody, suggesting a differential distribution of SNAP25 isoforms. The presence of SNAP25a and SNAP25b isoforms in mouse retina was established by reverse transcriptase-polymerase chain reaction. SNAP25 expression in mammalian horizontal cells along with other SNARE proteins is consistent with vesicular exocytosis.


Versatile functional roles of horizontal cells in the retinal circuit.

  • Taro Chaya‎ et al.
  • Scientific reports‎
  • 2017‎

In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.


Early cis-regulatory events in the formation of retinal horizontal cells.

  • Estie Schick‎ et al.
  • Developmental biology‎
  • 2021‎

During retinal development, multipotent and restricted progenitor cells generate all of the neuronal cells of the retina. Among these are horizontal cells, which are interneurons that modulate the light-induced signal from photoreceptors. This study utilizes the identification of novel cis-regulatory elements as a method to examine the gene regulatory networks that direct the development of horizontal cells. Here we describe a screen for cis-regulatory elements, or enhancers, for the horizontal cell-associated genes PTF1A, ONECUT1 (OC1), TFAP2A (AP2A), and LHX1. The OC1ECR22 and Tfap2aACR5 elements were shown to be potential enhancers for OC1 and TFAP2A, respectively, and to be specifically active in developing horizontal cells. The OC1ECR22 element is activated by PTF1A and RBPJ, which translates to regulation of OC1 expression and suggests that PTF1A is a direct activator of OC1 expression in developing horizontal cells. The region within the Tfap2aACR5 element that is responsible for its activation was determined to be a 100 bp sequence named Motif 4. Both OC1ECR22 and Tfap2aACR5 are negatively regulated by the nuclear receptors THRB and RXRG, as is the expression of OC1 and AP2A, suggesting that nuclear receptors may have a role in the negative regulation of horizontal cell development.


A positive feedback synapse from retinal horizontal cells to cone photoreceptors.

  • Skyler L Jackman‎ et al.
  • PLoS biology‎
  • 2011‎

Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+) and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+), whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.


Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development.

  • Per-Henrik D Edqvist‎ et al.
  • Development (Cambridge, England)‎
  • 2004‎

Cell migration plays an important role during the development of the retina. In this work we have studied the migration of newborn horizontal cells in avian embryonic retina. Using the pattern of the early expressed transcription factors Lim1 and Prox1 we have shown that horizontal cells migrate bi-directionally from their site of birth, close to the ventricular side, to the adjacent (vitreal) side of the neuroepithelium, where they align just next to the prospective ganglion cell layer before migrating back again to their final laminar position in the external part of the inner nuclear layer. The migration occurs between Hamburger and Hamilton stages 24 and 33, which is equivalent to embryonic day 4.5 and 8. Between stages 26 and 30 the horizontal cells reside close to the ganglion cell layer and intra ocular injections of a cytochalasin D, an actin polymerisation blocker that inhibit migration, at stage 29 interfered with the migration of the horizontal cells to their final destination. Furthermore, using biolistic gene transfer with a green fluorescence protein expression vector of retinal slices we were able to record ventricle-directed migration by time-lapse microscopy. Combining biolistics with immunohistochemistry we showed that transfected cells, which have also been translocated in a ventricular direction were positive for the horizontal cell markers Lim1 and Prox1. The alternative path of migration that is described in this work differs from the generally accepted one for horizontal cells and this knowledge will influence the view of how the molecular determination of horizontal cells is specified.


Form-deprivation myopia downregulates calcium levels in retinal horizontal cells in mice.

  • Qihang Li‎ et al.
  • Experimental eye research‎
  • 2022‎

The process of eye axis lengthening in myopic eyes is regulated by multiple mechanisms in the retina, and horizontal cells (HCs) are an essential interneuron in the visual regulatory system. Wherein intracellular Ca2+ plays an important role in the events involved in the regulatory role of HCs in the retinal neural network. It is unknown if intracellular Ca2+ regulation in HCs mediates changes in the retinal neural network during myopia progression. We describe here a novel calcium fluorescence indicator system that monitors HCs' intracellular Ca2+ levels during form-deprivation myopia (FDM) in mice. AAV injection of GCaMP6s, as a protein calcium sensor, into a Gja10-Cre mouse monitored the changes in Ca2+signaling in HC that accompany FDM progression in mice. An alternative Gja10-Cre/Ai96-GCaMP6s mouse model was created by cross mating Gja10-Cre with Ai96 mice. Immunofluorescence imaging and live imaging of the retinal cells verified the identity of these animal models. Changes in retinal horizontal cellular Ca2+ levels were resolved during FDM development. The numbers of GCaMP6s and the proportion of HCs were tracked based on profiling changes in GCaMP6s+calbindin+/calbindin+ coimmunostaining patterns. They significantly decreased more after either two days (P < 0.01) or two weeks (P < 0.001) in form deprived eyes than in the untreated fellow eyes. These decreases in their proportion reached significance only in the retinal central region rather than also in the retinal periphery. A novel approach employing a GCaMP6s mouse model was developed that may ultimately clarify if HCs mediate Ca2+ signals that contribute to controlling FDM progression in mice. The results indicate so far that FDM progression is associated with declines in HC Ca2+ signaling activity.


Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions.

  • Rachel M Huckfeldt‎ et al.
  • Nature neuroscience‎
  • 2009‎

Sensory neurons with common functions are often nonrandomly arranged and form dendritic territories that show little overlap, or tiling. Repulsive homotypic interactions underlie such patterns in cell organization in invertebrate neurons. It is unclear how dendro-dendritic repulsive interactions can produce a nonrandom distribution of cells and their spatial territories in mammalian retinal horizontal cells, as mature horizontal cell dendrites overlap substantially. By imaging developing mouse horizontal cells, we found that these cells transiently elaborate vertical neurites that form nonoverlapping columnar territories on reaching their final laminar positions. Targeted cell ablation revealed that the vertical neurites engage in homotypic interactions that result in tiling of neighboring cells before the establishment of their dendritic fields. This developmental tiling of transient neurites correlates with the emergence of a nonrandom distribution of the cells and could represent a mechanism that organizes neighbor relationships and territories of neurons before circuit assembly.


Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors.

  • Shengguo Li‎ et al.
  • Neuron‎
  • 2004‎

During vertebrate retinogenesis, seven classes of cells are specified from multipotent progenitors. To date, the mechanisms underlying multipotent cell fate determination by retinal progenitors remain poorly understood. Here, we show that the Foxn4 winged helix/forkhead transcription factor is expressed in a subset of mitotic progenitors during mouse retinogenesis. Targeted disruption of Foxn4 largely eliminates amacrine neurons and completely abolishes horizontal cells, while overexpression of Foxn4 strongly promotes an amacrine cell fate. These results indicate that Foxn4 is both necessary and sufficient for commitment to the amacrine cell fate and is nonredundantly required for the genesis of horizontal cells. Furthermore, we provide evidence that Foxn4 controls the formation of amacrine and horizontal cells by activating the expression of the retinogenic factors Math3, NeuroD1, and Prox1. Our data suggest a model in which Foxn4 cooperates with other key retinogenic factors to mediate the multipotent differentiation of retinal progenitors.


An Alternative Splice Variant of Zebrafish Cx52.6 is Expressed in Retinal Horizontal Cells.

  • H Greb‎ et al.
  • Neuroscience‎
  • 2018‎

Retinal horizontal cells (HCs) are inhibitory neurons, which modulate the transmission of light-elicited signals from photoreceptors to bipolar cells in the outer retina. HCs of the same physiological type are extensively coupled via gap junctions. In the zebrafish retina, the population of HCs comprises up to four morphologically distinct subtypes. Four different connexins (Cx52.6, Cx52.7, Cx52.9 and Cx55.5) were detected in these cells with overlapping expression patterns. In this study, we show that Cx52.6 is alternatively spliced in the retina, resulting in an additional isoform, designated as Cx53.4, which differs from the originally described Cx52.6 only by the final C-terminal peptide (12 vs. 4 aa). Further protein sequence alignments revealed that Cx53.4 represents the counterpart of alternatively spliced mouse Cx57 and human Cx62. RT-PCR analyses of mRNA expression in different adult zebrafish tissues showed that Cx53.4 is expressed exclusively in the retina. The localization of Cx53.4 protein within the retina was analyzed using a specific antibody. Immunofluorescence analyses demonstrated that the expression of Cx53.4 is restricted to HCs of all four subtypes. Further, immunoelectron microscopy confirmed the presence of Cx53.4 in gap junctions between HC dendrites and between their axon terminals.


Retinal horizontal cells lacking Rb1 sustain persistent DNA damage and survive as polyploid giant cells.

  • Stacy L Donovan‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

The retinoblastoma tumor susceptibility gene, Rb1, is a key regulator of the cell cycle, and mutations in this gene have been found in many human cancers. Prior studies showed that retina-specific knockout of Rb1 in the mouse results in the formation of abnormally large horizontal cells, but the development, fate, and genomic status of these cells remain unknown. In this study, we conditionally inactivate Rb1 in early retinal progenitors and show that the loss of Rb1 leads to the rapid degeneration of most retinal cells except horizontal cells, which persist as giant cells with aberrant centrosome content, DNA damage, and polyploidy/aneuploidy. We observed inappropriate cell cycle entry of Rb1-deficient horizontal cells during the first postnatal weeks, which dropped off abruptly by P30. Despite extensive DNA damage in Rb1-deficient horizontal cells, these cells can still enter mitosis. Adult Rb1-deficient horizontal cells display elevated DNA content (5N-34N) that varied continuously, suggesting the presence of aneuploidy. We also found evidence of supernumerary and disoriented centrosomes in a rare population of mitotic cells in the mutant retinas. Overall our data demonstrate that horizontal cells are a remarkably robust cell type and can survive for months despite extensive DNA damage and elevated genome content.


Jmjd3 Plays Pivotal Roles in the Proper Development of Early-Born Retinal Lineages: Amacrine, Horizontal, and Retinal Ganglion Cells.

  • Toshiro Iwagawa‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

Trimethylation of histone H3 at lysine 27 (H3K27me3) is a critical mediator of transcriptional gene repression, and Jmjd3 and Utx are the demethylases specific to H3K27me3. Using an in vitro retinal explant culture system, we previously revealed the role of Jmjd3 in the development of rod bipolar cells; however, the roles of Jmjd3 in the development of early-born retinal cells are unknown due to limitations concerning the use of retinal explant culture systems. In this study, we investigated the roles of Jmjd3 in the development of early-born retinal cells.


Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate.

  • Anthony J A Molina‎ et al.
  • The Journal of physiology‎
  • 2004‎

Self-referencing H(+)-selective microelectrodes were used to measure extracellular H(+) fluxes from horizontal cells isolated from the skate retina. A standing H(+) flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H(+) flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na(+)-H(+) exchanger. Glutamate decreased H(+) flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H(+) flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H(+) flux. Immunocytochemical localization of the plasmalemma Ca(2+)-H(+)-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H(+) flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca(2+)-H(+)-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones.


Retinal horizontal cells use different synaptic sites for global feedforward and local feedback signaling.

  • Christian Behrens‎ et al.
  • Current biology : CB‎
  • 2022‎

In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.


Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

  • Sebastian Ströh‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.


Modulation of extracellular proton fluxes from retinal horizontal cells of the catfish by depolarization and glutamate.

  • Matthew A Kreitzer‎ et al.
  • The Journal of general physiology‎
  • 2007‎

Self-referencing H(+)-selective microelectrodes were used to measure extracellular proton fluxes from cone-driven horizontal cells isolated from the retina of the catfish (Ictalurus punctatus). The neurotransmitter glutamate induced an alkalinization of the area adjacent to the external face of the cell membrane. The effect of glutamate occurred regardless of whether the external solution was buffered with 1 mM HEPES, 3 mM phosphate, or 24 mM bicarbonate. The AMPA/kainate receptor agonist kainate and the NMDA receptor agonist N-methyl-D-aspartate both mimicked the effect of glutamate. The effect of kainate on proton flux was inhibited by the AMPA/kainate receptor blocker CNQX, and the effect of NMDA was abolished by the NMDA receptor antagonist DAP-5. Metabotropic glutamate receptor agonists produced no alteration in proton fluxes from horizontal cells. Depolarization of cells either by increasing extracellular potassium or directly by voltage clamp also produced an alkalinization adjacent to the cell membrane. The effects of depolarization on proton flux were blocked by 10 microM nifedipine, an inhibitor of L-type calcium channels. The plasmalemma Ca(2+/)H(+) ATPase (PMCA) blocker 5(6)-carboxyeosin also significantly reduced proton flux modulation by glutamate. Our results are consistent with the hypothesis that glutamate-induced extracellular alkalinizations arise from activation of the PMCA pump following increased intracellular calcium entry into cells. This process might help to relieve suppression of photoreceptor neurotransmitter release that results from exocytosed protons from photoreceptor synaptic terminals. Our findings argue strongly against the hypothesis that protons released by horizontal cells act as the inhibitory feedback neurotransmitter that creates the surround portion of the receptive fields of retinal neurons.


Onecut1 is essential for horizontal cell genesis and retinal integrity.

  • Fuguo Wu‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

Horizontal cells are interneurons that synapse with photoreceptors in the outer retina. Their genesis during development is subject to regulation by transcription factors in a hierarchical manner. Previously, we showed that Onecut 1 (Oc1), an atypical homeodomain transcription factor, is expressed in developing horizontal cells (HCs) and retinal ganglion cells (RGCs) in the mouse retina. Herein, by knocking out Oc1 specifically in the developing retina, we show that the majority (∼80%) of HCs fail to form during early retinal development, implying that Oc1 is essential for HC genesis. However, no other retinal cell types, including RGCs, were affected in the Oc1 knock-out. Analysis of the genetic relationship between Oc1 and other transcription factor genes required for HC development revealed that Oc1 functions downstream of FoxN4, in parallel with Ptf1a, but upstream of Lim1 and Prox1. By in utero electroporation, we found that Oc1 and Ptf1a together are not only essential, but also sufficient for determination of HC fate. In addition, the synaptic connections in the outer plexiform layer are defective in Oc1-null mice, and photoreceptors undergo age-dependent degeneration, indicating that HCs are not only an integral part of the retinal circuitry, but also are essential for the survival of photoreceptors. In sum, these results demonstrate that Oc1 is a critical determinant of HC fate, and reveal that HCs are essential for photoreceptor viability, retinal integrity, and normal visual function.


The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage.

  • Patrick W Keeley‎ et al.
  • Frontiers in neuroanatomy‎
  • 2014‎

Retinal neurons are often arranged as non-random distributions called "mosaics," as their somata minimize proximity to neighboring cells of the same type. The horizontal cells serve as an example of such a mosaic, but little is known about the developmental mechanisms that underlie their patterning. To identify genes involved in this process, we have used three different spatial statistics to assess the patterning of the horizontal cell mosaic across a panel of genetically distinct recombinant inbred strains. To avoid the confounding effect of cell density, which varies twofold across these different strains, we computed the "real/random regularity ratio," expressing the regularity of a mosaic relative to a randomly distributed simulation of similarly sized cells. To test whether this latter statistic better reflects the variation in biological processes that contribute to horizontal cell spacing, we subsequently compared the genomic linkage for each of these two traits, the regularity index, and the real/random regularity ratio, each computed from the distribution of nearest neighbor (NN) distances and from the Voronoi domain (VD) areas. Finally, we compared each of these analyses with another index of patterning, the packing factor. Variation in the regularity indexes, as well as their real/random regularity ratios, and the packing factor, mapped quantitative trait loci to the distal ends of Chromosomes 1 and 14. For the NN and VD analyses, we found that the degree of linkage was greater when using the real/random regularity ratio rather than the respective regularity index. Using informatic resources, we narrowed the list of prospective genes positioned at these two intervals to a small collection of six genes that warrant further investigation to determine their potential role in shaping the patterning of the horizontal cell mosaic.


Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels.

  • Arlene A Hirano‎ et al.
  • eNeuro‎
  • 2016‎

The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGAT(flox/flox) mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT(-/-) mice were the same as Cx57-VGAT(+/+) controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT(-/-) mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT(-/-) mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors.


Heterogenic final cell cycle by chicken retinal Lim1 horizontal progenitor cells leads to heteroploid cells with a remaining replicated genome.

  • Shahrzad Shirazi Fard‎ et al.
  • PloS one‎
  • 2013‎

Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs) exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal) mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.


Analysis of tetrodotoxin-sensitive sodium and low voltage-activated calcium channels in developing mouse retinal horizontal cells.

  • Andreas Feigenspan‎ et al.
  • Experimental eye research‎
  • 2020‎

Expression patterns of voltage-gated ion channels determine the spatio-temporal dynamics of ion currents that supply excitable neurons in developing tissue with proper electrophysiological properties. The purpose of the study was to identify fast cationic inward currents in mouse retinal horizontal cells (HCs) and describe their biophysical properties at different developmental stages. We also aimed to reveal their physiological role in shaping light responses (LRs) in adult HCs. HCs were recorded in horizontal slices of wild-type mouse retina at postnatal stages ranging from p8 through p60. Voltage-dependent inward currents were isolated with appropriate voltage protocols and blockers specific for sodium and T-type calcium channels. LRs were evoked with full-field flashes (130 μW/cm2). Transient and steady inward currents were identified at all developmental stages. Transient currents were mediated by T-type calcium and TTX-sensitive sodium channels, whereas steady currents were blocked by cadmium, indicating the presence of high voltage-activated calcium channels. Activation and steady-state inactivation kinetics of T-type calcium channels revealed a contribution to the resting membrane potential during postnatal development. Additionally, both sodium and T-type calcium channels had an impact on HC LRs at light offset in adult animals. Our results showed that the voltage-dependent inward currents of postnatally developing mouse HCs consist of T-type calcium, TTX-sensitive sodium, and high voltage-activated calcium channels, and that transient ionic currents contributed to light-evoked responses of adult HCs, suggesting a role in HC information processing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: