Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 8,284 papers

Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration.

  • Xiaojie Pang‎ et al.
  • Nature communications‎
  • 2023‎

While photosynthesis transforms sunlight energy into sugar, aerobic and anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activities. These processes take place within one cell across several compartments, however it remains largely unexplored how they interact with one another. Here we report that the weak acids produced during fermentation down-regulate both photosynthesis and aerobic respiration. This effect is mechanistically explained with an "ion trapping" model, in which the lipid bilayer selectively traps protons that effectively acidify subcellular compartments with smaller buffer capacities - such as the thylakoid lumen. Physiologically, we propose that under certain conditions, e.g., dim light at dawn, tuning down the photosynthetic light reaction could mitigate the pressure on its electron transport chains, while suppression of respiration could accelerate the net oxygen evolution, thus speeding up the recovery from hypoxia. Since we show that this effect is conserved across photosynthetic phyla, these results indicate that fermentation metabolites exert widespread feedback control over photosynthesis and aerobic respiration. This likely allows algae to better cope with changing environmental conditions.


Acoustic respiration rate and pulse oximetry-derived respiration rate: a clinical comparison study.

  • Michal E Eisenberg‎ et al.
  • Journal of clinical monitoring and computing‎
  • 2020‎

Respiration rate (RR) is a critical vital sign that provides early detection of respiratory compromise. The acoustic technique of measuring continuous respiration rate (RRa) interprets the large airway sound envelope to calculate respiratory rate while pulse oximetry-derived respiratory rate (RRoxi) interprets modulations of the photoplethsymograph in response to hemodynamic changes during the respiratory cycle. The aim of this study was to compare the performance of these technologies to each other and to a capnography-based reference device. Subjects were asked to decrease their RR from 14 to 4 breaths per minute (BPM) and then increase RR from 14 to 24 BPM. The effects of physiological noise, ambient noise, and head movement and shallow breathing on device performance were also evaluated. The test devices were: (1) RRa, Radical-7 (Masimo Corporation), (2) RRoxi, Nellcor™ Bedside Respiratory Patient Monitoring System (Medtronic), and (3) reference device, Capnostream20p™ (Medtronic). All devices were configured with their default settings. Twenty-nine healthy adult subjects were included in the study. During abrupt changes in breathing, overall RRoxi was accurate for longer periods of time than RRa; specifically, RRoxi was more accurate during low and normal RR, but not during high RR. RRoxi also displayed a value for significantly longer time periods than RRa when the subjects produced physiological sounds and moved their heads, but not during shallow breathing or ambient noise. RRoxi may be more accurate than RRa during development of bradypnea. Also, RRoxi may display a more reliable RR value during routine patient activities.


Neural regulation of respiration.

  • R A Mitchell‎
  • Clinics in chest medicine‎
  • 1980‎

We would suggest that during the evolution of the mammalian respiratory neural networks the primitive centers in the cervical cord as well as the ventral respiratory group which evolved in fish have been preserved and are capable of functioning in the absence of the dorsal respiratory group generator which evolved with air breathing. We believe that these pattern generators are separate from the identified respiratory units that have so far been studied and that the apparent reciprocal inhibition observed in the identified cells results from synchronized excitatory and inhibitory inputs arising from the pattern generator itself. We believe that the model of such a system shown in Figure 3 is consistent with the observations cited in the previous section and inconsistent with models involving a single site for a pattern generator or interaction between various populations of known or identified respiratory units.


Respiration Monitoring via Forcecardiography Sensors.

  • Emilio Andreozzi‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients' discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland-Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases.


Methionine supplementation stimulates mitochondrial respiration.

  • Farida Tripodi‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2018‎

Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.


The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration.

  • Rasmus M Birn‎ et al.
  • NeuroImage‎
  • 2008‎

Changes in the subject's breathing rate or depth, such as a breath-hold challenge, can cause significant MRI signal changes. However, the response function that best models breath-holding-induced signal changes, as well as those resulting from a wider range of breathing variations including those occurring during rest, has not yet been determined. Respiration related signal changes appear to be slower than neuronally induced BOLD signal changes and are not modeled accurately using the typical hemodynamic response functions used in fMRI. In this study, we derive a new response function to model the average MRI signal changes induced by variations in the respiration volume (breath-to-breath changes in the respiration depth and rate). This was done by averaging the response to a series of single deep breaths performed once every 40 s amongst otherwise constant breathing. The new "respiration response function" consists of an early overshoot followed by a later undershoot (peaking at approximately 16 s), and accurately models the MRI signal changes resulting from breath-holding as well as cued depth and rate changes.


Allergen disrupts amygdala-respiration coupling.

  • Kolsoum Dehdar‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2022‎

Allergic asthma affects both the respiratory function and central nervous system. Communication between the amygdala and respiratory control system is critical for regulating breathing function. To date, no study provides the effect of allergic inflammation on amygdala-respiration coupling. Here, we simultaneously recorded respiration and local field potentials of the amygdala during awake immobility in a rat model of allergic asthma. A decreased synchrony was found between amygdala and respiration in asthmatic rats. Allergen also reduced the modulatory effect of the respiration phase on amygdala power at delta, theta and gamma2 (80-120 Hz) frequencies. Moreover, in the animal model of allergic asthma, delta and theta oscillations strongly coordinate local gamma2 activity in the amygdala. These findings suggest that allergen can induce brain alterations and therefore shed light on future works to address how disruption of amygdala-respiration coupling contributes to respiratory dysfunction in allergic asthma.


Experimental warming increases ecosystem respiration by increasing above-ground respiration in alpine meadows of Western Himalaya.

  • Pankaj Tiwari‎ et al.
  • Scientific reports‎
  • 2021‎

Alpine ecosystems in the Himalaya, despite low primary productivity, store considerable amount of organic carbon. However, these ecosystems are highly vulnerable to climate warming which may stimulate ecosystem carbon efflux leading to carbon-loss and positive feedback. We used open-top chambers to understand warming responses of ecosystem respiration (ER) and soil respiration (SR) in two types of alpine meadows viz., herbaceous meadow (HM) and sedge meadow (SM), in the Western Himalaya. Experimental warming increased ER by 33% and 28% at HM and SM, respectively. No significant effect on SR was observed under warming, suggesting that the increase in ER was primarily due to an increase in above-ground respiration. This was supported by the warming-induced increase in above-ground biomass and decrease in SR/ER ratio. Soil temperature was the dominant controlling factor of respiration rates and temperature sensitivity of both ER and SR increased under warming, indicating an increase in contribution from plant respiration. The findings of the study suggest that climate warming by 1.5-2 °C would promote ER via increase in above-ground respiration during the growing season. Moreover, net C uptake in the alpine meadows may increase due to enhanced plant growth and relatively resistant SR under warming.


Energy expenditure estimation from respiration variables.

  • Rahel Gilgen-Ammann‎ et al.
  • Scientific reports‎
  • 2017‎

The aim of this study was to develop and cross-validate two models to estimate total energy expenditure (TEE) based on respiration variables in healthy subjects during daily physical activities. Ninety-nine male and female subjects systematically varying in age (18-60 years) and body mass index (BMI; 17-36 kg*m-2) completed eleven aerobic activities with a portable spirometer as the criterion measure. Two models were developed using linear regression analyses with the data from 67 randomly selected subjects (50.0% female, 39.9 ± 11.8 years, 25.1 ± 5.2 kg*m-2). The models were cross-validated with the other 32 subjects (49% female, 40.4 ± 10.7 years, 24.7 ± 4.6 kg*m-2) by applying equivalence testing and Bland-and-Altman analyses. Model 1, estimating TEE based solely on respiratory volume, respiratory rate, and age, was significantly equivalent to the measured TEE with a systematic bias of 0.06 kJ*min-1 (0.22%) and limits of agreement of ±6.83 kJ*min-1. Model 1 was as accurate in estimating TEE as Model 2, which incorporated further information on activity categories, heart rate, sex, and BMI. The results demonstrated that respiration variables and age can be used to accurately determine daily TEE for different types of aerobic activities in healthy adults across a broad range of ages and body sizes.


Extreme heat events heighten soil respiration.

  • Hassan Anjileli‎ et al.
  • Scientific reports‎
  • 2021‎

In the wake of climate change, extreme events such as heatwaves are considered to be key players in the terrestrial biosphere. In the past decades, the frequency and severity of heatwaves have risen substantially, and they are projected to continue to intensify in the future. One key question is therefore: how do changes in extreme heatwaves affect the carbon cycle? Although soil respiration (Rs) is the second largest contributor to the carbon cycle, the impacts of heatwaves on Rs have not been fully understood. Using a unique set of continuous high frequency in-situ measurements from our field site, we characterize the relationship between Rs and heatwaves. We further compare the Rs response to heatwaves across ten additional sites spanning the contiguous United States (CONUS). Applying a probabilistic framework, we conclude that during heatwaves Rs rates increase significantly, on average, by ~ 26% relative to that of non-heatwave conditions over the CONUS. Since previous in-situ observations have not measured the Rs response to heatwaves (e.g., rate, amount) at the high frequency that we present here, the terrestrial feedback to the carbon cycle may be underestimated without capturing these high frequency extreme heatwave events.


Respiration aligns perception with neural excitability.

  • Daniel S Kluger‎ et al.
  • eLife‎
  • 2021‎

Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behavior. We acquired respiration and human magnetoencephalography data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8-13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected versus undetected targets underscored the behavioral benefits of heightened excitability. Notably, respiration-locked excitability changes were maximized at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.


Mitochondrial Respiration-Dependent ANT2-UCP2 Interaction.

  • Tomas A Schiffer‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Adenine nucleotide translocases (ANTs) and uncoupling proteins (UCPs) are known to facilitate proton leak across the inner mitochondrial membrane. However, it remains to be unravelled whether UCP2/3 contribute to significant amount of proton leak in vivo. Reports are indicative of UCP2 dependent proton-coupled efflux of C4 metabolites from the mitochondrial matrix. Previous studies have suggested that UCP2/3 knockdown (KD) contributes to increased ANT-dependent proton leak. Here we investigated the hypothesis that interaction exists between the UCP2 and ANT2 proteins, and that such interaction is regulated by the cellular metabolic demand. Protein-protein interaction was evaluated using reciprocal co-immunoprecipitation and in situ proximity ligation assay. KD of ANT2 and UCP2 was performed by siRNA in human embryonic kidney cells 293A (HEK293A) cells. Mitochondrial and cellular respiration was measured by high-resolution respirometry. ANT2-UCP2 interaction was demonstrated, and this was dependent on cellular metabolism. Inhibition of ATP synthase promoted ANT2-UCP2 interaction whereas high cellular respiration, induced by adding the mitochondrial uncoupler FCCP, prevented interaction. UCP2 KD contributed to increased carboxyatractyloside (CATR) sensitive proton leak, whereas ANT2 and UCP2 double KD reduced CATR sensitive proton leak, compared to UCP2 KD. Furthermore, proton leak was reduced in double KD compared to UCP2 KD. In conclusion, our results show that there is an interaction between ANT2-UCP2, which appears to be dynamically regulated by mitochondrial respiratory activity. This may have implications in the regulation of mitochondrial efficiency or cellular substrate utilization as increased activity of UCP2 may promote a switch from glucose to fatty acid metabolism.


Global warming accelerates soil heterotrophic respiration.

  • Alon Nissan‎ et al.
  • Nature communications‎
  • 2023‎

Carbon efflux from soils is the largest terrestrial carbon source to the atmosphere, yet it is still one of the most uncertain fluxes in the Earth's carbon budget. A dominant component of this flux is heterotrophic respiration, influenced by several environmental factors, most notably soil temperature and moisture. Here, we develop a mechanistic model from micro to global scale to explore how changes in soil water content and temperature affect soil heterotrophic respiration. Simulations, laboratory measurements, and field observations validate the new approach. Estimates from the model show that heterotrophic respiration has been increasing since the 1980s at a rate of about 2% per decade globally. Using future projections of surface temperature and soil moisture, the model predicts a global increase of about 40% in heterotrophic respiration by the end of the century under the worst-case emission scenario, where the Arctic region is expected to experience a more than two-fold increase, driven primarily by declining soil moisture rather than temperature increase.


A whole-genome scan for 24-hour respiration rate: a major locus at 10q26 influences respiration during sleep.

  • E J C de Geus‎ et al.
  • American journal of human genetics‎
  • 2005‎

Identification of genes causing variation in daytime and nighttime respiration rates could advance our understanding of the basic molecular processes of human respiratory rhythmogenesis. This could also serve an important clinical purpose, because dysfunction of such processes has been identified as critically important in sleep disorders. We performed a sib-pair-based linkage analysis on ambulatory respiration rate, using the data from 270 sibling pairs who were genotyped at 374 markers on the autosomes, with an average distance of 9.65 cM. Uni- and multivariate variance-components-based multipoint linkage analyses were performed for respiration rate during three daytime periods (morning, afternoon, and evening) and during nighttime sleep. Evidence of linkage was found at chromosomal locations 3q27, 7p22, 10q26, and 22q12. The strongest evidence of linkage was found for respiration rate during sleep, with LOD scores of 2.36 at 3q27, 3.86 at 10q26, and 1.59 at 22q12. In a simultaneous analysis of these three loci, >50% of the variance in sleep respiration rate could be attributed to a quantitative-trait loci near marker D10S1248 at 10q. Genes in this area (GFRA1, ADORA2L, FGR2, EMX2, and HMX2) can be considered promising positional candidates for genetic association studies of respiratory control during sleep.


Respiration patterns of resting wasps (Vespula sp.).

  • Helmut Käfer‎ et al.
  • Journal of insect physiology‎
  • 2013‎

We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta<5°C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements.


Global patterns of human and livestock respiration.

  • Qixiang Cai‎ et al.
  • Scientific reports‎
  • 2018‎

Carbon emissions from human and animals has been neglected by previous studies in estimating the carbon cycle of ecosystem. This study first estimates the spatial-temporal patterns of carbon emissions density from human and livestock respiration among countries around the world from 1960-2014. Then we simulate the soil heterotrophic respiration (Rh) to analyze the contribution of human and livestock respiration to total heterotrophic respiration of global ecosystem. Our results show that the respiration of human and livestock respectively contribute more than 1% of the total carbon output from heterotrophic respiration in most countries and affect more than 5% in almost half of the countries. Moreover, the effect of livestock respiration is slightly greater than that of human beings. Therefore, the estimation of heterotrophic respiration should not only consider Rh in these countries, human and livestock respiration are equally important in the research on regional carbon budget.


Camera-Based Respiration Monitoring of Unconstrained Rodents.

  • Lukas Breuer‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2023‎

Animal research has always been crucial for various medical and scientific breakthroughs, providing information on disease mechanisms, genetic predisposition to diseases, and pharmacological treatment. However, the use of animals in medical research is a source of great controversy and ongoing debate in modern science. To ensure a high level of bioethics, new guidelines have been adopted by the EU, implementing the 3R principles to replace animal testing wherever possible, reduce the number of animals per experiment, and refine procedures to minimize stress and pain. Supporting these guidelines, this article proposes an improved approach for unobtrusive, continuous, and automated monitoring of the respiratory rate of laboratory rats. It uses the cyclical expansion and contraction of the rats' thorax/abdominal region to determine this physiological parameter. In contrast to previous work, the focus is on unconstrained animals, which requires the algorithms to be especially robust to motion artifacts. To test the feasibility of the proposed approach, video material of multiple rats was recorded and evaluated. High agreement was obtained between RGB imaging and the reference method (respiratory rate derived from electrocardiography), which was reflected in a relative error of 5.46%. The current work shows that camera-based technologies are promising and relevant alternatives for monitoring the respiratory rate of unconstrained rats, contributing to the development of new alternatives for a continuous and objective assessment of animal welfare, and hereby guiding the way to modern and bioethical research.


Respiration-based investigation of adsorbent-bioprocess compatibility.

  • Johannes Pastoors‎ et al.
  • Biotechnology for biofuels and bioproducts‎
  • 2023‎

The efficiency of downstream processes plays a crucial role in the transition from conventional petrochemical processes to sustainable biotechnological production routes. One promising candidate for product separation from fermentations with low energy demand and high selectivity is the adsorption of the target product on hydrophobic adsorbents. However, only limited knowledge exists about the interaction of these adsorbents and the bioprocess. The bioprocess could possibly be harmed by the release of inhibitory components from the adsorbent surface. Another possibility is co-adsorption of essential nutrients, especially in an in situ application, making these nutrients unavailable to the applied microorganism.


Constraining size-dependence of vegetation respiration rates.

  • Akihiko Ito‎
  • Scientific reports‎
  • 2020‎

Plant autotrophic respiration is responsible for the atmospheric release of about half of all photosynthetically fixed carbon and responds to climate change in a manner different from photosynthesis. The plant mass-specific respiration rate (rA), a key parameter of the carbon cycle, has not been sufficiently constrained by observations at ecosystem or broader scales. In this study, a meta-analysis revealed a global relationship with vegetation biomass that explains 67-77% of the variance of rA across plant ages and biomes. rA decreased with increasing vegetation biomass such that annual rA was two orders of magnitude larger in fens and deserts than in mature forests. This relationship can be closely approximated by a power-law equation with a universal exponent and yields an estimated global autotrophic respiration rate of 64 ± 12 Pg C yr-1. This finding, which is phenomenologically and theoretically consistent with metabolic scaling and plant demography, provides a way to constrain the carbon-cycle components of Earth system models.


Quantifying thermal adaptation of soil microbial respiration.

  • Charlotte J Alster‎ et al.
  • Nature communications‎
  • 2023‎

Quantifying the rate of thermal adaptation of soil microbial respiration is essential in determining potential for carbon cycle feedbacks under a warming climate. Uncertainty surrounding this topic stems in part from persistent methodological issues and difficulties isolating the interacting effects of changes in microbial community responses from changes in soil carbon availability. Here, we constructed a series of temperature response curves of microbial respiration (given unlimited substrate) using soils sampled from around New Zealand, including from a natural geothermal gradient, as a proxy for global warming. We estimated the temperature optima ([Formula: see text]) and inflection point ([Formula: see text]) of each curve and found that adaptation of microbial respiration occurred at a rate of 0.29 °C ± 0.04 1SE for [Formula: see text] and 0.27 °C ± 0.05 1SE for [Formula: see text] per degree of warming. Our results bolster previous findings indicating thermal adaptation is demonstrably offset from warming, and may help quantifying the potential for both limitation and acceleration of soil C losses depending on specific soil temperatures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: