Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Revealing shared differential co-expression profiles in rice infected by virus from reoviridae and sequiviridae group.

  • Jagajjit Sahu‎ et al.
  • Gene‎
  • 2019‎

Differential co-expression is a cutting-edge approach to analyze gene expression data and identify both shared and divergent expression patterns. The availability of high-throughput gene expression datasets and efficient computational approaches have unfolded the opportunity to a systems level understanding of functional genomics of different stresses with respect to plants. We performed the meta-analysis of the available microarray data for reoviridae and sequiviridae infection in rice with the aim to identify the shared gene co-expression profile. The microarray data were downloaded from ArrayExpress and analyzed through a modified Weighted Gene Co-expression Network Analysis (WGCNA) protocol. WGCNA clustered the genes based on the expression intensities across the samples followed by identification of modules, eigengenes, principal components, topology overlap, module membership and module preservation. The module preservation analysis identified 4 modules; salmon (638 genes), midnightblue (584 genes), lightcyan (686 genes) and red (562 genes), which are highly preserved in both the cases. The networks in case of reoviridae infection showed neatly packed clusters whereas, in sequiviridae, the clusters were loosely connected which is due to the differences in the correlation values. We also identified 83 common transcription factors targeting the hub genes from all the identified modules. This study provides a coherent view of the comparative aspect of the expression of common genes involved in different virus infections which may aid in the identification of novel targets and development of new intervention strategy against the virus.


Complete sequence and genetic characterization of Raspberry latent virus, a novel member of the family Reoviridae.

  • Diego F Quito-Avila‎ et al.
  • Virus research‎
  • 2011‎

A new virus isolated from red raspberry plants and detected in the main production areas in northern Washington State, USA and British Columbia, Canada was fully sequenced and found to be a novel member of the family Reoviridae. The virus was designated as Raspberry latent virus (RpLV) based on the fact that it is symptomless when present in single infections in several Rubus virus indicators and commercial raspberry cultivars. RpLV genome is 26,128 nucleotides (nt) divided into 10 dsRNA segments. The length of the genomic segments (S) was similar to those of other reoviruses ranging from 3948 nt (S1) to 1141 nt (S10). All of the segments, except S8, have the conserved terminal sequences 5'-AGUU----GAAUAC-3'. A point mutation at each terminus of S8 resulted in the sequences 5'-AGUA----GAUUAC-3'. Inverted repeats adjacent to each conserved terminus as well as stem loops and extended pan handles were identified by analyses of secondary structures of the non-coding sequences. All segments, except S3 and S10, contained a single open reading frame (ORF) on the positive sense RNAs. Two out-of-frame overlapping ORFs were identified in segments S3 (ORF S3a and S3b) and S10 (ORF S10a and S10b). Amino acid (aa) alignments of the putative proteins encoded by the main ORF in each segment revealed a high identity to several proteins encoded by reoviruses from different genera including Oryzavirus, Cypovirus, and Dinovernavirus. Alignments of the polymerase, the most conserved protein among reoviruses, revealed a 36% aa identity between RpLV and Rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus, indicating that these two viruses are closely related. Phylogenetic analyses showed that RpLV clusters with members of the genera Oryzavirus, Cypovirus, Dinovernavirus and Fijivirus. These genera belong to the subfamily Spinareovirinae which includes reoviruses with spiked core particles ('turreted' reoviruses). In addition, two nucleotide binding motifs, regarded as 'signature' sequences among turreted reoviruses, were also found in RpLV P8, suggesting that RpLV is a novel dicot-infecting reovirus in the subfamily Spinareovirinae.


Occurrence of Reovirus (ARV) Infections in Poultry Flocks in Poland in 2010-2017.

  • Hanna Czekaj‎ et al.
  • Journal of veterinary research‎
  • 2018‎

Avian reovirus (ARV) infections in poultry populations are reported worldwide. The reovirus belongs to the genus Orthoreovirus, family Reoviridae. The aim of the study was to evaluate the incidence of ARV infections in the poultry population based on diagnostic tests performed in 2010-2017.


Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in Cairna moschata.

  • Tao Yun‎ et al.
  • Scientific reports‎
  • 2018‎

Duck reovirus (DRV) is an typical aquatic bird pathogen belonging to the Orthoreovirus genus of the Reoviridae family. Reovirus causes huge economic losses to the duck industry. Although DRV has been identified and isolated long ago, the responses of Cairna moschata to classical/novel duck reovirus (CDRV/NDRV) infections are largely unknown. To investigate the relationship of pathogenesis and immune response, proteomes of C. moschata liver cells under the C/NDRV infections were analyzed, respectively. In total, 5571 proteins were identified, among which 5015 proteins were quantified. The differential expressed proteins (DEPs) between the control and infected liver cells displayed diverse biological functions and subcellular localizations. Among the DEPs, most of the metabolism-related proteins were down-regulated, suggesting a decrease in the basal metabolisms under C/NDRV infections. Several important factors in the complement, coagulation and fibrinolytic systems were significantly up-regulated by the C/NDRV infections, indicating that the serine protease-mediated innate immune system might play roles in the responses to the C/NDRV infections. Moreover, a number of molecular chaperones were identified, and no significantly changes in their abundances were observed in the liver cells. Our data may give a comprehensive resource for investigating the regulation mechanism involved in the responses of C. moschata to the C/NDRV infections.


The effects of orally administered lactoferrin in the prevention and management of viral infections: A systematic review.

  • Alessandra Sinopoli‎ et al.
  • Reviews in medical virology‎
  • 2022‎

It has been demonstrated that lactoferrin (LF) plays a role in host defence, but evidence on its potential antiviral property from clinical studies is fragmented. Our systematic review aimed at identifying the effects of orally administered LF against virus infections. The systematic search was conducted on PubMed, Scopus, Web of Science, BioRxiv.org and ClinicalTrials.gov from database inception to 7th January 2021. Eligible articles investigated any virus family and provided data on the effects of orally administered LF of any origin in the prevention and/or management of confirmed viral infections in people of any age. A narrative synthesis of the results was performed. Quality was assessed with the Cochrane Risk-Of-Bias and ROBINS-1 tools. A total of 27 records were included, nine of which were registered protocols. We found data on Flaviviridae (n = 10), Retroviridae (n = 3), Coronaviridae (n = 2), Reoviridae (n = 2) and Caliciviridae (n = 1). Most published trials were at high risk of bias. The findings were heterogeneous across and within viral families regarding virological, immunological and biological response, with no clear conclusion. Some weak but positive results were reported about decrease of symptom severity and duration, or reduction in viral loads. Despite high tolerability, the effects of LF as oral supplement are still inconsistent, both in preventing and managing viral infections. Small sample sizes, variety in recruitment and treatment protocols, and low study quality may have contributed to such heterogeneity. Better-designed studies are needed to further investigate its potential benefits against viral infections, including SARS-CoV-2.


The phosphoproteomic responses of duck (Cairna moschata) to classical/novel duck reovirus infections in the spleen tissue.

  • Tao Yun‎ et al.
  • Scientific reports‎
  • 2020‎

Duck reovirus (DRV) is a fatal member of the genus Orthoreovirus in the family Reoviridae. The disease caused by DRV leads to huge economic losses to the duck industry. Post-translational modification is an efficient strategy to enhance the immune responses to virus infection. However, the roles of protein phosphorylation in the responses of ducklings to Classic/Novel DRV (C/NDRV) infections are largely unknown. Using a high-resolution LC-MS/MS integrated to highly sensitive immune-affinity antibody method, phosphoproteomes of Cairna moschata spleen tissues under the C/NDRV infections were analyzed, producing a total of 8,504 phosphorylation sites on 2,853 proteins. After normalization with proteomic data, 392 sites on 288 proteins and 484 sites on 342 proteins were significantly changed under the C/NDRV infections, respectively. To characterize the differentially phosphorylated proteins (DPPs), a systematic bioinformatics analyses including Gene Ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation were performed. Two important serine protease system-related proteins, coagulation factor X and fibrinogen α-chain, were identified as phosphorylated proteins, suggesting an involvement of blood coagulation under the C/NDRV infections. Furthermore, 16 proteins involving the intracellular signaling pathways of pattern-recognition receptors were identified as phosphorylated proteins. Changes in the phosphorylation levels of MyD88, NF-κB, RIP1, MDA5 and IRF7 suggested a crucial role of protein phosphorylation in host immune responses of C. moschata. Our study provides new insights into the responses of ducklings to the C/NDRV infections at PTM level.


Identification of bluetongue virus serotypes 1, 4, and 17 co-infections in sheep flocks during outbreaks in Brazil.

  • Lorena Lima Barbosa Guimarães‎ et al.
  • Research in veterinary science‎
  • 2017‎

Bluetongue (BT) is a vector-borne viral disease caused by the Bluetongue virus (BTV), an Orbivirus from the Reoviridae family, affecting domestic and wild ruminants. BTV circulation in Brazil was first reported in 1978, and several serological surveys indicate that the virus is widespread, although with varied prevalence. In 2014, BT outbreaks affected sheep flocks in Rio Grande do Sul state, causing significant mortality (18.4%; 91/495) in BTV-infected sheep. In total, seven farms were monitored, and one or two sheep from each farm that died due to clinical signs of BT were necropsied. Apathy, pyrexia, anorexia, tachycardia, respiratory, and digestive disorders were noted. Additionally, an abortion was recorded in one of the monitored farms. The main gross lesions observed were pulmonary edema, anterior-ventral pulmonary consolidation, muscular necrosis in the esophagus and in the ventral serratus muscle, and hemorrhagic lesions in the heart. The blood and tissue samples were tested for BTV RNA detection by RT-qPCR targeting the segment 10. Positive samples were used for viral isolation. The isolated BTVs were typed by conventional RT-PCR targeting the segment 2 of the 26 BTV serotypes, followed by sequencing analysis. BTV-1, BTV-4 and BTV-17 were identified in the analyzed samples. Double or triple BTV co-infections with these serotypes were detected. We report the occurrence of BT outbreaks related to BTV-1, BTV-4 and BTV-17 infections and co-infections causing clinical signs in sheep flocks in Southern Brazil, with significant mortality and lethality rates.


Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in the spleen tissue of Cairna moschata.

  • Tao Yun‎ et al.
  • Journal of proteomics‎
  • 2019‎

Duck reovirus (DRV), a member of the genus Orthoreovirus in the family Reoviridae, was first isolated from Muscovy ducks. The disease associated with DRV causes great economic losses to the duck industry. However, the responses of duck (Cairna moschata) to the classical/novel DRV (C/NDRV) infections are largely unknown. To reveal the relationship of pathogenesis and immune response, the proteomes of duck spleen cells under the control and C/NDRV infections were compared. In total, 5986 proteins were identified, of which 5389 proteins were quantified. The different accumulated proteins (DAPs) under the C/NDRV infections showed displayed various biological functions and diverse subcellular localizations. The proteins related to the serine protease system were siginificantly changed, suggesting that the activated serine protease system may play an important role under the C/NDRV infections. Furthermore, the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues were compared. Only a small number of common DAPs were identified in both liver and spleen tissues, suggesting diversified pattern involved in the responses to the C/NRDV infections. However, the changes in the proteins involved in the serine protease systems were similar in both liver and spleen cells. Our data may give a comprehensive resource for investigating the responses to C/NDRV infections in ducks. SIGNIFICANCE: A newly developed MS/MS-based method involving isotopomer labels and 'tandem mass' has been applied to protein accurate quantification in current years. However, no studies on the responses of duck (Cairna moschata) spleen tissue to the classical/novel DRV (C/NDRV) infections have been performed. As a continued study of our previous report on the responses of duck liver tissue to the C/NDRV infections, the current study further compared the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues. Our results will provide an opportunity to reveal the relationship of pathogenesis and immune response and basic information on the pathogenicity of C/NDRV in ducks.


Genomes of viral isolates derived from different mosquitos species.

  • Mohammadreza Sadeghi‎ et al.
  • Virus research‎
  • 2017‎

Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.


Virulence, pathology, and pathogenesis of Pteropine orthoreovirus (PRV) in BALB/c mice: Development of an animal infection model for PRV.

  • Kazutaka Egawa‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

Cases of acute respiratory tract infection caused by Pteropine orthoreovirus (PRV) of the genus Orthoreovirus (family: Reoviridae) have been reported in Southeast Asia, where it was isolated from humans and bats. It is possible that PRV-associated respiratory infections might be prevalent in Southeast Asia. The clinical course of PRV is not fully elucidated.


Sero-epidemiological survey of bluetongue disease in one-humped camel (Camelus dromedarius) in Kassala State, Eastern Sudan.

  • Molhima M Elmahi‎ et al.
  • Irish veterinary journal‎
  • 2021‎

Bluetongue (BT) is a vector-borne viral disease of ruminant and camelid species which is transmitted by Culicoides spp. The causative agent of BT is bluetongue virus (BTV) that belongs to genus Orbivirus of the family Reoviridae. The clinical disease is seen mainly in sheep but mostly sub-clinical infections of BT are seen in cattle, goats and camelids. The clinical reaction of camels to infection is usually not apparent. The disease is notifiable to the World Organization for Animal Health (OIE), causing great economic losses due to decreased trade and high mortality and morbidity rates associated with bluetongue outbreaks. The objective of this study was to investigate the seroprevalence of BTV in camels in Kassala State, Eastern Sudan and to identify the potential risk factors associated with the infection. A cross sectional study using a structured questionnaire survey was conducted during 2015-2016. A total of 210 serum samples were collected randomly from camels from 8 localities of Kassala State. The serum samples were screened for the presence of BTV specific immunoglobulin (IgG) antibodies using a competitive enzyme-linked immunosorbent assay (cELISA).


Monitoring longitudinal immunological responses to bluetongue virus 17 in experimentally infected sheep.

  • Joseph A Westrich‎ et al.
  • Virus research‎
  • 2023‎

Bluetongue virus (BTV) is an economically important pathogen of ruminant species with worldwide prevalence. While many BTV infections are asymptomatic, animals with symptomatic presentation deteriorate quickly with the sickest succumbing to disease within one week. Animals that survive the infection often require months to recover. The immune response to BTV infection is thought to play a central role in controlling the disease. Key to understanding BTV disease is profiling vertebrate host immunological cellular and cytokine responses. Studies to characterize immune responses in ruminants have been limited by a lack of species-specific reagents and assay technology. Here we assess the longitudinal immunological response to experimental BTV-17-California (CA) infection in sheep using the most up to date assays. We infected a cohort of sheep with BTV-17-CA and longitudinally monitored each animal for clinical disease, viremia and specific immunological parameters (B cells, T cells, monocytes) by RT-qPCR, traditional flow cytometry and/or fluorescent based antibody arrays. BTV-inoculated sheep exhibited clinical signs characteristic of bluetongue virus disease. Circulating virus was demonstrated after 8 days post inoculation (DPI) and remained detectable for the remainder of the time course (24 DPI). A distinct lymphopenia was observed between 7 and 14 DPI that rebounded to mock-inoculated control levels at 17 DPI. In addition, we observed increased expression of pro-inflammatory cytokines after 8 DPI. Taken together, we have established a model of BTV infection in sheep and have successfully monitored the longitudinal vertebrate host immunological response and viral infection progression using a combination of traditional methods and cutting-edge technology.


Investigation of a potential zoonotic transmission of orthoreovirus associated with acute influenza-like illness in an adult patient.

  • Kaw Bing Chua‎ et al.
  • PloS one‎
  • 2011‎

Bats are increasingly being recognized as important reservoir hosts for a large number of viruses, some of them can be highly virulent when they infect human and livestock animals. Among the new bat zoonotic viruses discovered in recent years, several reoviruses (respiratory enteric orphan viruses) were found to be able to cause acute respiratory infections in humans, which included Melaka and Kampar viruses discovered in Malaysia, all of them belong to the genus Orthoreovirus, family Reoviridae. In this report, we describe the isolation of a highly related virus from an adult patient who suffered acute respiratory illness in Malaysia. Although there was no direct evidence of bat origin, epidemiological study indicated the potential exposure of the patient to bats before the onset of disease. The current study further demonstrates that spillover events of different strains of related orthoreoviruses from bats to humans are occurring on a regular basis, which calls for more intensive and systematic surveillances to fully assess the true public health impact of these newly discovered bat-borne zoonotic reoviruses.


Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control.

  • Luc Swevers‎ et al.
  • Frontiers in physiology‎
  • 2021‎

While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.


Intergrated Transcriptomic and Proteomic Analysis Revealed the Differential Responses to Novel Duck Reovirus Infection in the Bursa of Fabricius of Cairna moschata.

  • Tao Yun‎ et al.
  • Viruses‎
  • 2022‎

The bursa of Fabricius is an immunologically organ against the invasion of duck reovirus (DRV), which is a fatal bird virus belonging to the Reoviridae family. However, responses of the bursa of Fabricius of Cairna moschata to novel DRV (NDRV) infection are largely unknown. Transcriptomes and proteomes of the samples from control and two NDRV strain (HN10 and JDm10) with different virulence were analyzed. Differentially expressed genes and differential accumulated proteins were enriched in the serine protease system and innate immune response clusters. Most of the immune-related genes were up-regulated under both JDm10/HN10 infections. However, the immune-related proteins were only accumulated under HN10 infection. For the serine protease system, coagulation factor IX, three chains of fibrinogen, and complements C8, C5, and C2s were significantly up-regulated by the HN10 infection, suggesting that the serine protease-mediated immune system might be involved in the resistance to NDRV infection. For the innate and adaptive immune system, RIG-I, MDA5, MAPK20, and IRF3 were significantly up-regulated, indicating their important roles against invaded virus. TLR-3 and IKBKB were only up-regulated in the liver cells, MAPK20 was only up-regulated in the bursa of Fabricius cells, and IRAK2 was only up-regulated in the spleen samples. Coagulation factor IX was increased in the bursa of Fabricius, not in the liver and spleen samples. The data provides a detailed resource for studying the proteins participating in the resistances of the bursa of Fabricius of duck to NDRV infections.


Unexpected Genetic Diversity of Two Novel Swine MRVs in Italy.

  • Lara Cavicchio‎ et al.
  • Viruses‎
  • 2020‎

Mammalian Orthoreoviruses (MRV) are segmented dsRNA viruses in the family Reoviridae. MRVs infect mammals and cause asymptomatic respiratory, gastro-enteric and, rarely, encephalic infections. MRVs are divided into at least three serotypes: MRV1, MRV2 and MRV3. In Europe, swine MRV (swMRV) was first isolated in Austria in 1998 and subsequently reported more than fifteen years later in Italy. In the present study, we characterized two novel reassortant swMRVs identified in one same Italian farm over two years. The two viruses shared the same genetic backbone but showed evidence of reassortment in the S1, S4, M2 segments and were therefore classified into two serotypes: MRV3 in 2016 and MRV2 in 2018. A genetic relation to pig, bat and human MRVs and other unknown sources was identified. A considerable genetic diversity was observed in the Italian MRV3 and MRV2 compared to other available swMRVs. The S1 protein presented unique amino acid signatures in both swMRVs, with unexpected frequencies for MRV2. The remaining genes formed distinct and novel genetic groups that revealed a geographically related evolution of swMRVs in Italy. This is the first report of the complete molecular characterization of novel reassortant swMRVs in Italy and Europe, which suggests a greater genetic diversity of swMRVs never identified before.


Multiple conformations of trimeric spikes visualized on a non-enveloped virus.

  • Yinong Zhang‎ et al.
  • Nature communications‎
  • 2022‎

Many viruses utilize trimeric spikes to gain entry into host cells. However, without in situ structures of these trimeric spikes, a full understanding of this dynamic and essential process of viral infections is not possible. Here we present four in situ and one isolated cryoEM structures of the trimeric spike of the cytoplasmic polyhedrosis virus, a member of the non-enveloped Reoviridae family and a virus historically used as a model in the discoveries of RNA transcription and capping. These structures adopt two drastically different conformations, closed spike and opened spike, which respectively represent the penetration-inactive and penetration-active states. Each spike monomer has four domains: N-terminal, body, claw, and C-terminal. From closed to opened state, the RGD motif-containing C-terminal domain is freed to bind integrins, and the claw domain rotates to expose and project its membrane insertion loops into the cellular membrane. Comparison between turret vertices before and after detachment of the trimeric spike shows that the trimeric spike anchors its N-terminal domain in the iris of the pentameric RNA-capping turret. Sensing of cytosolic S-adenosylmethionine (SAM) and adenosine triphosphate (ATP) by the turret triggers a cascade of events: opening of the iris, detachment of the spike, and initiation of endogenous transcription.


Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution.

  • Huiquan Liu‎ et al.
  • PloS one‎
  • 2012‎

Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts.


Serological Investigations of Bluetongue Virus (BTV) among Sheep and Goats in Kassala State, Eastern Sudan.

  • Molhima M Elmahi‎ et al.
  • Veterinary medicine international‎
  • 2020‎

Bluetongue (BT) is an infectious, noncontagious, vector-borne viral disease of wild and domestic ruminants. BTV is a member of the Orbivirus genus of the family Reoviridae. The present study aimed to investigate the seroprevalence of BTV in sheep and goats in Kassala State, Sudan. It also aimed to determine risk factors associated with BTV infection. The study was carried out by a structured questionnaire survey, and a total of 809 serum samples were collected from sheep (n = 459) and goats (n = 350) from 9 different localities in Kassala state. These samples were analyzed using a competitive enzyme-linked immunosorbent assay (cELISA) for the detection of BTV antibodies. The overall seroprevalence of BTV was 91.2% (738/809). In goats, the prevalence of BTV antibodies was comparatively higher (100%) than in sheep (84.5%). The prevalence differed between localities and was the highest in the center section of Kassala and Western Kassala (100%). Animals aged 6-11 months were highly infected (93.9%) compared to 1-year-old (85.5%). Caprine species was more likely to be infected (100%) than ovine (84.5%), and females were highly infected (92.8%) than males (85.5%). BTV infections were higher in the winter season (91.4%). Risk factors that showed significant associations with cELISA positivity included locality and sex (p ≤ 0.003) and species and age (p ≤ 0.000). Factors significantly associated with cELISA positivity in multivariate analysis were localities, species, age, and sex. BTV infection is prevalent in sheep and goat populations in Kassala state.


Extensive Phylogenetic Analysis of Piscine Orthoreovirus Genomic Sequences Shows the Robustness of Subgenotype Classification.

  • Marcos Godoy‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: