Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,803 papers

Regulation of the (pro)renin-renin receptor in cardiac remodelling.

  • Hasan Mahmud‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

The (pro)renin-renin receptor [(P)RR] was discovered as an important novel component of the renin-angiotensin system (RAS). The functional significance of (P)RR is widely studied in renal and vascular pathologies and has sparked interest for a potential role in cardiovascular disease. To investigate the role of (P)RR in cardiac pathophysiology, we aimed to assess (P)RR regulation in adverse cardiac remodelling of the failing heart. In particular, we evaluated the expression of (P)RR in different models of heart failure and across different species. Significantly increased levels of (P)RR mRNA were found in post-myocardial infarcted (MI) hearts of rats (1.6-fold, P < 0.05) and mice (5-fold, P < 0.01), as well as in transgenic rats with overexpression of the mouse renin gene (Ren2) (2.2-fold, P < 0.01). Moreover, we observed a strong increase of (P)RR expression in hearts of dilated cardiomyopathy (DCM) patients (5.3-fold, P < 0.001). Because none of the tested commercially available antibodies appeared to detect endogenous (P)RR, a (P)RR-specific polyclonal antibody was generated to study (P)RR protein levels. (P)RR protein levels were significantly increased in the post-MI rat heart (1.4-fold, P < 0.05) as compared to controls. Most interestingly in DCM patients, a significant 8.7-fold (P < 0.05) increase was observed. Thus, protein expression paralleled gene expression. These results demonstrate that (P)RR expression is strongly up-regulated both in rodent models of heart failure and in the failing human heart, hinting to a potential role for (P)RR in cardiac pathophysiology.


(Pro)renin/renin receptor expression during normal and preeclamptic pregnancy in rats.

  • M A Avila-Ramírez‎ et al.
  • Life sciences‎
  • 2019‎

Pregnancy is a physiological stage with profound cardiovascular changes leading to hypotension. Preeclampsia (PE) reverts these normal changes inducing hypertension. Renin-angiotensin system (RAS) has been related in PE genesis. It has been reported a novel receptor in the system, the Prorenin/Renin receptor (PRR), with several roles in renal and cardiovascular illnesses. It is not known, however, if PRR changes its expression or is activated during normal or PE-complicated pregnancy on tissues intimately related to hypertension. So, the aim of this work was to describe PRR expression during normal and hypertensive pregnancy in rats.


Activation of (pro)renin by (pro)renin receptor in extracellular vesicles from osteoclasts.

  • Jonathan B Murray‎ et al.
  • Scientific reports‎
  • 2021‎

The (pro)renin receptor (PRR) is a multifunctional integral membrane protein that serves as a component of the vacuolar H+-ATPase (V-ATPase) and also activates (pro)renin. We recently showed that full-length PRR, found as part of a V-ATPase sub-complex, is abundant in extracellular vesicles shed by osteoclasts. Here, we tested whether these extracellular vesicles stimulate (pro)renin. Extracellular vesicles isolated from the conditioned media of RAW 264.7 osteoclast-like cells or primary osteoclasts were characterized and counted by nanoparticle tracking. Immunoblotting confirmed that full-length PRR was present. Extracellular vesicles from osteoclasts dose-dependently stimulated (pro)renin activity, while extracellular vesicles from 4T1 cancer cells, in which we did not detect PRR, did not activate (pro)renin. To confirm that the ability of extracellular vesicles from osteoclasts to stimulate (pro)renin activity was due to the PRR, the "handle region peptide" from the PRR, a competitive inhibitor of PRR activity, was tested. It dose-dependently blocked the ability of extracellular vesicles to stimulate the enzymatic activity of (pro)renin. In summary, the PRR, an abundant component of extracellular vesicles shed by osteoclasts, stimulates (pro)renin activity. This represents a novel mechanism by which extracellular vesicles can function in intercellular regulation, with direct implications for bone biology.


Diagnostic value of aldosterone to renin ratio calculated by plasma renin activity or plasma renin concentration in primary aldosteronism: a meta-analysis.

  • Zhenjie Liu‎ et al.
  • Chinese medical journal‎
  • 2022‎

Since the diagnostic value of aldosterone to renin ratio (ARR) calculated by plasma renin concentration (PRC) or plasma renin activity (PRA) is still inconclusive, we conducted a meta-analysis by systematically reviewing relevant literature to explore the difference in the diagnostic efficacy of ARR calculated by PRC or PRA, so as to provide guidance for clinical diagnosis.


Discovery of highly potent renin inhibitors potentially interacting with the S3' subsite of renin.

  • Xiaowei Sun‎ et al.
  • European journal of medicinal chemistry‎
  • 2015‎

To exploit the S3' subsite of renin active site for renin inhibitor design, 42 aliskiren derivatives with modified P2' portion were designed, synthesized and biologically evaluated. Some highly potent renin inhibitors (IC₅₀ < 3 nM) were identified, among which compounds 38 (IC₅₀ = 0.9 nM) and 39 (IC₅₀ = 0.7 nM) were over 2.5-fold more potent than aliskiren (IC₅₀ = 2.3 nM). SAR analysis indicated that incorporation of polar hydrophilic moieties into the P2' portion of renin inhibitors generally enhanced the potency. Consistently with this, molecular modeling study revealed that the triazole part of 39 could provide additional interactions to the S3' subsite of renin active site. Moreover, in vivo evaluation in the double transgenic mouse hypertension model demonstrated that 39 produced greater reduction of the mean arterial blood pressure than ariskiren at the doses of 17.0 and 34.0 μmol/kg, respectively. Taken together, the S3' subsite of renin active site merits further consideration for renin inhibitor design.


Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis.

  • Leon J DeLalio‎ et al.
  • Kidney international‎
  • 2020‎

Kidney function and blood pressure homeostasis are regulated by purinergic signaling mechanisms. These autocrine/paracrine signaling pathways are initiated by the release of cellular ATP, which influences kidney hemodynamics and steady-state renin secretion from juxtaglomerular cells. However, the mechanism responsible for ATP release that supports tonic inputs to juxtaglomerular cells and regulates renin secretion remains unclear. Pannexin 1 (Panx1) channels localize to both afferent arterioles and juxtaglomerular cells and provide a transmembrane conduit for ATP release and ion permeability in the kidney and the vasculature. We hypothesized that Panx1 channels in renin-expressing cells regulate renin secretion in vivo. Using a renin cell-specific Panx1 knockout model, we found that male Panx1 deficient mice exhibiting a heightened activation of the renin-angiotensin-aldosterone system have markedly increased plasma renin and aldosterone concentrations, and elevated mean arterial pressure with altered peripheral hemodynamics. Following ovariectomy, female mice mirrored the male phenotype. Furthermore, constitutive Panx1 channel activity was observed in As4.1 renin-secreting cells, whereby Panx1 knockdown reduced extracellular ATP accumulation, lowered basal intracellular calcium concentrations and recapitulated a hyper-secretory renin phenotype. Moreover, in response to stress stimuli that lower blood pressure, Panx1-deficient mice exhibited aberrant "renin recruitment" as evidenced by reactivation of renin expression in pre-glomerular arteriolar smooth muscle cells. Thus, renin-cell Panx1 channels suppress renin secretion and influence adaptive renin responses when blood pressure homeostasis is threatened.


Adrenal (Pro)renin Receptor Expression and Serum Soluble (Pro)renin Receptor Concentration in Primary Aldosteronism.

  • Daisuke Watanabe‎ et al.
  • International journal of endocrinology‎
  • 2020‎

The (pro)renin receptor [(P)RR] is a multifunctioning protein playing roles in various pathological conditions. A soluble form of (P)RR [s(P)RR] has been considered a biomarker for (P)RR expression in tissues. Expression of (P)RR has been described in aldosterone-producing adenoma (APA), but the roles of (P)RR have yet to be fully determined. This study investigated the significance of (P)RR and serum s(P)RR concentrations in patients with APA. We evaluated associations between (P)RR expression and expression of CYP11B2, an aldosterone synthase, and aldosterone production by the adrenal glands and assessed the relationships between serum s(P)RR concentration and background factors. (P)RR colocalized with CYP11B2 and expression levels of (P)RR were positively associated with those of CYP11B2 in APA tissues. (P)RR immunoreactivity in these tissues correlated positively with plasma aldosterone concentrations (PAC) and urinary aldosterone excretion. Also, in APA, (P)RR mRNA abundance was positively correlated with β-catenin mRNA abundance. Significant positive correlations were identified between serum s(P)RR concentration and plasma glucose, hemoglobin A1c, and serum creatinine levels, but not with PAC (in either peripheral vein or adrenal vein) or adrenal (P)RR expression level. This study showed that (P)RR expression level correlates with CYP11B2 expression in APA tissues and PAC and urinary aldosterone excretion, suggesting that (P)RR expression may contribute to aldosterone synthesis via CYP11B2 activation in APAs, although serum s(P)RR concentration failed to show any significant relationship with adrenal (P)RR expression. Adrenal (P)RR activity might offer a therapeutic target in the treatment of PA, although this issue needs to be investigated in future studies.


Human kidney pericytes produce renin.

  • Ania Stefanska‎ et al.
  • Kidney international‎
  • 2016‎

Pericytes, perivascular cells embedded in the microvascular wall, are crucial for vascular homeostasis. These cells also play diverse roles in tissue development and regeneration as multi-lineage progenitors, immunomodulatory cells and as sources of trophic factors. Here, we establish that pericytes are renin producing cells in the human kidney. Renin was localized by immunohistochemistry in CD146 and NG2 expressing pericytes, surrounding juxtaglomerular and afferent arterioles. Similar to pericytes from other organs, CD146+CD34-CD45-CD56- renal fetal pericytes, sorted by flow cytometry, exhibited tri-lineage mesodermal differentiation potential in vitro. Additionally, renin expression was triggered in cultured kidney pericytes by cyclic AMP as confirmed by immuno-electron microscopy, and secretion of enzymatically functional renin, capable of generating angiotensin I. Pericytes derived from second trimester human placenta also expressed renin in an inducible fashion although the renin activity was much lower than in renal pericytes. Thus, our results confirm and extend the recently discovered developmental plasticity of microvascular pericytes, and may open new perspectives to the therapeutic regulation of the renin-angiotensin system.


(Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation.

  • Shingo Satofuka‎ et al.
  • Diabetes‎
  • 2009‎

The term "receptor-associated prorenin system" (RAPS) refers to the pathogenic mechanisms whereby prorenin binding to its receptor dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling via the receptor. The aim of the present study was to define the association of the RAPS with diabetes-induced retinal inflammation.


A Genetic Variant in the Distal Enhancer Region of the Human Renin Gene Affects Renin Expression.

  • Yasukazu Makino‎ et al.
  • PloS one‎
  • 2015‎

The high heritability of plasma renin activity was confirmed in recent investigations. A variation located near the strong enhancer of the human renin gene (REN), C-5312T, has been shown to have different transcription activity levels depending on its allele: the 5312T allele shows transcription levels that are 45% greater than those of the 5312C allele. The purpose of this study was to confirm the hypothesis that variations in the enhancer region of the REN gene are involved in regulating renal expression of renin.


Renin, aldosterone, the aldosterone-to-renin ratio, and incident hypertension among normotensive subjects from the general population.

  • Natalie Arnold‎ et al.
  • Cardiovascular research‎
  • 2023‎

To investigate the predictive ability of direct plasma renin and aldosterone concentrations as well as their ratio [aldosterone-to-renin (ARR)] for incident hypertension in the general population.


Relationship between Soluble (pro)Renin Receptor and Renin Activity in Patients with Severe Heart Failure.

  • Yoshifumi Ikeda‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

The (pro)renin receptor ((P)RR), which evokes renin activity with prorenin, is secreted extracellularly as soluble (P)RR (s(P)RR) and may participate in tissue renin-angiotensin system (RAS) activity in severe heart failure (HF) patients. The aim of this study was to determine whether s(P)RR is an adequate marker in severe HF patients treated with RAS inhibitors, beta-blockers, and tolvaptan. We enrolled 11 patients with severe HF between May 2013 and June 2014. First of all, furosemide of all patients was changed to tolvaptan with hydrochlorothiazide and then the treatment had been changed according to the patient's condition. After 1, 3, 6, and 12 months, the variance of s(P)RR, plasma renin activity (PRA), plasma renin concentration (PRC), brain natriuretic peptide (BNP) and their association was investigated. Furosemide was restarted in five patients and two patients suffered cardiac death. PRA/PRC and s(P)RR were unchanged (PRA: 10.7 ± 13.9 to 12.8 ± 8.5 ng/mL/h; PRC: 347.1 ± 577.5 to 148.3 ± 123.8 pg/mL; s(P)RR: 28.2 ± 19.3 to 33.4 ± 22.4 ng/mL) and had no significant correlations (PRA and s(P)RR: p = 0.36; PRC and s(P)RR: p = 0.35). There was a significant positive correlation with a high correlation coefficient (CC) between PRA and PRC (p < 0.0001, CC = 0.76), and a negative correlation with weak CC between BNP and s(P)RR (p = 0.01, CC = -0.45). In conclusion, s(P)RR was always high and had no correlations with disease state and PRA/PRC in severe HF patients.


Upregulation of Cortical Renin and Downregulation of Medullary (Pro)Renin Receptor in Unilateral Ureteral Obstruction.

  • Stefanny M Figueroa‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin-angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8-12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1β (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-β1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.


Intermittent Hypoxia Upregulates the Renin and Cd38 mRNAs in Renin-Producing Cells via the Downregulation of miR-203.

  • Yoshinori Takeda‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and it is a known risk factor for hypertension. The upregulation of the renin-angiotensin system has been reported in IH, and the correlation between renin and CD38 has been noted. We exposed human HEK293 and mouse As4.1 renal cells to experimental IH or normoxia for 24 h and then measured the mRNA levels using a real-time reverse transcription polymerase chain reaction. The mRNA levels of Renin (Ren) and Cd38 were significantly increased by IH, indicating that they could be involved in the CD38-cyclic ADP-ribose signaling pathway. We next investigated the promotor activities of both genes, which were not increased by IH. Yet, a target mRNA search of the microRNA (miRNA) revealed both mRNAs to have a potential target sequence for miR-203. The miR-203 level of the IH-treated cells was significantly decreased when compared with the normoxia-treated cells. The IH-induced upregulation of the genes was abolished by the introduction of the miR-203 mimic, but not the miR-203 mimic NC negative control. These results indicate that IH stress downregulates the miR-203 in renin-producing cells, thereby resulting in increased mRNA levels of Ren and Cd38, which leads to hypertension.


IgE receptor-mediated mast-cell renin release.

  • Silvia Aldi‎ et al.
  • The American journal of pathology‎
  • 2014‎

Renin is a newly discovered constituent of mast cells. Given that mast cells play a major role in IgE-mediated allergic hypersensitivity, we investigated whether activation of the high-affinity IgE receptor FcεRI elicits release of mast-cell renin. Cross-linking of FcεRI on the surface of mature bone marrow-derived mast cells elicited release of enzymatically active renin protein. The angiotensin I-forming activity of the renin protein was completely blocked by the selective renin inhibitor BILA 2157, which excludes formation of angiotensin I by proteases other than renin. FcεRI-mediated mast-cell renin release was inhibited by dexamethasone and potentiated by the proinflammatory mediator PGE2. Furthermore, cross-linking of mast-cell FcεRI in ex vivo murine hearts passively sensitized with monoclonal anti-DNP IgE also resulted in mast-cell degranulation and overflow of renin. Our findings indicate that IgE-mediated allergic hypersensitivity provokes release of renin from both cultured and resident cardiac mast cells, a process likely to be exacerbated in a chronic inflammatory background. Given the widespread distribution of mast cells, and the presence of angiotensinogen and angiotensin-converting enzyme in many tissues, renin release in immediate hypersensitivity reactions could result in local angiotensin II generation and multiorgan dysfunctions.


Human kidney organoids produce functional renin.

  • Anusha S Shankar‎ et al.
  • Kidney international‎
  • 2021‎

Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell-derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system.


[Role of renin angiotensin system in the vasopressor mechanisms of hypertension--gene analyses and tissue renin angiotensin system].

  • M Nishimura‎ et al.
  • Rinsho byori. The Japanese journal of clinical pathology‎
  • 1995‎

The renin angiotensin system is one of the most important humoral factors underlying the mechanism of hypertension. The genes constituting the renin angiotensin system have been expected to be candidates for essential hypertension. DNA polymorphisms of angiotensinogen and angiotensin II type 1 receptor genes are reported to be significantly related with the incidence of human hypertension, but further investigation is needed to clarify the relationship between the genes of the renin angiotensin system and hypertension. The renin angiotensin system exists not only in circulating blood, but also in extrarenal organs and tissues. Tissue renin angiotensin systems in the brain, blood vessels, and adrenal glands are considered to play important roles in the pressor mechanisms in low renin as well as high renin hypertension. Gene expressions of the constituents of the tissue renin angiotensin system are affected in part by circulating angiotensin II, but they are regulated mostly by their own specific control mechanisms in each organ and tissue. In future, laboratory tests in clinical medicine may be necessary to determine the DNA polymorphisms and tissue gene expression of renin angiotensin system, in deciding the diagnosis, prognosis and therapy of hypertension.


Regulation of (Pro)Renin Receptor in Renin-Positive Smooth Muscle Cells of Kidney Arterioles in Rats with STZ-Induced Diabetes.

  • Zsolt Razga‎ et al.
  • International journal of nephrology‎
  • 2019‎

Objective. The nephron (pro)renin receptor may play a pathophysiological role in renal disorders in hypertension or diabetes. The aim of this study was to determine the relationship of (pro)renin receptors and transdifferentiation between the renin-negative and renin-positive SMCs in the afferent arteriole by estimating the distribution of (pro)renin receptors in renin-positive and renin-negative SMCs of the afferent arteriole of kidneys in normal and streptozotocin- (STZ-) induced diabetic rats. Therefore in diabetes the renin granulation of afferent arterioles is different as in normal, the diabetes model for finding the differences to normal in distribution of (pro)renin receptors of afferent arterioles was used. Method. To estimate the number of (pro)renin receptors in arteriolar SMCs a special protocol of immunohistochemistry to stereology was followed. Results. Our results showed that on the surface of renin-positive SMCs the number of (pro)renin receptors was upregulated, while in the cytoplasm of SMCs there was downregulation in comparison to renin-negative SMCs. There is a significant difference between the number of (pro)renin receptors on the surface and in the cytoplasm of renin-positive SMCs in normal rats. These differences in the number of (pro)renin receptors were not present in rats with STZ-induced diabetes. Any other differences in the number of (pro)renin receptors between the STZ-induced diabetic and normal rats were not detected. The tissue level of angiotensin II did not change in the kidneys of STZ-induced diabetic rats. Conclusion. The distribution of (pro)renin receptors in afferent arteriolar SMCs is related to renin granulation of SMCs, but independent of angiotensin II plasma or tissue levels in the kidney.


Immunohistochemistry for (Pro)renin Receptor in Humans.

  • Satoshi Morimoto‎ et al.
  • International journal of endocrinology‎
  • 2021‎

The (pro)renin receptor is a multifunctional protein with roles in angiotensin-II-dependent and -independent intracellular cell signaling and roles as an intracellular accessory protein for the vacuolar H+-ATPase, including hormone secretion. While (pro)renin receptor mRNA is widely expressed in various human tissues, localization of (pro)renin receptor protein expression has not yet been systemically determined. Therefore, this study localized (pro)renin receptor protein expression in human organs. Systemic immunohistochemical examination of (pro)renin receptor expression was performed in whole body organs of autopsy cases. (Pro)renin receptor immunostaining was observed in the cytoplasm of cells in almost all human organs. It was observed in thyroid follicular epithelial cells, hepatic cells, pancreatic duct epithelial cells, zona glomerulosa and zona reticularis of the cortex and medulla of the adrenal gland, proximal and distal tubules and collecting ducts of the kidney, cardiomyocytes, and skeletal muscle cells. In the brain, (pro)renin receptor staining was detected in neurons throughout all areas, especially in the medulla oblongata, paraventricular nucleus and supraoptic nucleus of the hypothalamus, cerebrum, granular layer of the hippocampus, Purkinje cell layer of the cerebellum, and the pituitary anterior and posterior lobes. In the anterior lobe of the pituitary gland, all types of anterior pituitary hormone-positive cells showed double staining with (pro)renin receptor. These data showed that (pro)renin receptor protein was expressed in almost all organs of the human body. Its expression pattern was not uniform, and cell-specific expression pattern was observed, supporting the notion that (pro)renin receptor plays numerous physiological roles in each human organ.


A renin transcript lacking exon 1 encodes for a non-secretory intracellular renin that increases aldosterone production in transgenic rats.

  • Jörg Peters‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2008‎

Renin transcripts lacking exon 1 and thus the signal sequence for co-translational transport to the endoplasmatic reticulum encode for a protein (exon[2-9]renin), that is confined to the cytoplasm. The function of exon(2-9)renin is currently unknown. Mitochondrial renin increases under conditions which stimulate aldosterone production. We hypothesized that exon(2-9)renin (1) is translated into a functionally active protein in vivo, (2) is not secreted but remains within the cytoplasm and (3) stimulates aldosterone production. To test these hypotheses we generated transgenic rats overexpressing exon(2-9)renin. Four transgenic lines were obtained expressing the transcript in various tissues including the heart and the adrenal gland. Renin was enriched particularly in the cytoplasm of transgenic rats. Renin was not elevated in plasma, indicating that exon(2-9)renin is produced but not secreted. The ratio of aldosterone to renin concentrations in plasma (PAC/PRC) was elevated in all transgenic lines except line 307, which also did not exhibit elevated cytoplasmatic renin levels in the adrenal gland (PAC/PRC in controls: 2.8+/-2.3; line 307: 1.9+/-0.8; n. s.; line 284: 5.8+/-1.9; P<0.02; line 294: 5.0+/-2.3; P<0.001; line 276: 10.3+/-5.1; P<0.001). We conclude that the exon(1A-9) renin transcript (1) is translated into a functionally active intracellular protein; (2) is targeted to the cytoplasm rather than being sorted to the secretory pathways and (3) is functionally active, regulating aldosterone production. The CX-(exon2-9)renin transgenic rat appears to be a useful model to study the role and the mechanisms of action of cytoplasmatic renin derived from exon(1A-9) transcripts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: