Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 12,342 papers

Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

  • Kristiina Tammimies‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2016‎

DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs.


Identification of key transcription factors - gene regulatory network related with osteogenic differentiation of human mesenchymal stem cells based on transcription factor prognosis system.

  • Xuefeng Kang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Human mesenchymal stem cells (hMSCs) have the capacity to differentiate into fabricate cartilage, muscle, marrow stroma, tendon/ligament, fat, and other connective tissues, providing a potential source for tissue regeneration. The aim of this study was to find the key transcription factors (TFs), which regulated osteogenic differentiation of hMSCs. In this study, three methods were performed to find the key TFs, which included enrichment analysis, direct impact value and indirect impact value. We used the patient and public involvements (PPI) network to integrate the results of the above methods for analysis. Then, we compared the osteoblast data to the control group on days 1, 3 and 7. Finally, we found the combination of the optimal and vital 30 TFs related to osteogenic differentiation. TFs FOS, SOX9 and EP300 were commonly expressed in 3 different days in the osteogenic lineages and presented in the PPI network at relatively high degrees. Moreover, TFs CREBBP, ESR1 and EGR1 also presented high effects on the 1st, 3rd and 7th day. The constructed network gives us a more comprehensive understanding of the mechanism of osteogenesis of hMSCs.


The Transcription Factor-microRNA Regulatory Network during hESC-chondrogenesis.

  • Rosie Griffiths‎ et al.
  • Scientific reports‎
  • 2020‎

Human embryonic stem cells (ESCs) offer a promising therapeutic approach for osteoarthritis (OA). The unlimited source of cells capable of differentiating to chondrocytes has potential for repairing damaged cartilage or to generate disease models via gene editing. However their use is limited by the efficiency of chondrogenic differentiation. An improved understanding of the transcriptional and post-transcriptional regulation of chondrogenesis will enable us to improve hESC chondrogenic differentiation protocols. Small RNA-seq and whole transcriptome sequencing was performed on distinct stages of hESC-directed chondrogenesis. This revealed significant changes in the expression of several microRNAs including upregulation of known cartilage associated microRNAs and those transcribed from the Hox complexes, and the downregulation of pluripotency associated microRNAs. Integration of miRomes and transcriptomes generated during hESC-directed chondrogenesis identified key functionally related clusters of co-expressed microRNAs and protein coding genes, associated with pluripotency, primitive streak, limb development and extracellular matrix. Analysis identified regulators of hESC-directed chondrogenesis such as miR-29c-3p with 10 of its established targets identified as co-regulated 'ECM organisation' genes and miR-22-3p which is highly co-expressed with ECM genes and may regulate these genes indirectly by targeting the chondrogenic regulators SP1 and HDAC4. We identified several upregulated transcription factors including HOXA9/A10/D13 involved in limb patterning and RELA, JUN and NFAT5, which have targets enriched with ECM associated genes. We have developed an unbiased approach for integrating transcriptome and miRome using protein-protein interactions, transcription factor regulation and miRNA target interactions and identified key regulatory networks prominent in hESC chondrogenesis.


Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma.

  • Jingchun Sun‎ et al.
  • PLoS computational biology‎
  • 2012‎

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important miRNAs in GBM and, potentially, other cancers.


Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes.

  • Neha Tiwari‎ et al.
  • Cell stem cell‎
  • 2018‎

A broad molecular framework of how neural stem cells are specified toward astrocyte fate during brain development has proven elusive. Here we perform comprehensive and integrated transcriptomic and epigenomic analyses to delineate gene regulatory programs that drive the developmental trajectory from mouse embryonic stem cells to astrocytes. We report molecularly distinct phases of astrogliogenesis that exhibit stage- and lineage-specific transcriptomic and epigenetic signatures with unique primed and active chromatin regions, thereby revealing regulatory elements and transcriptional programs underlying astrocyte generation and maturation. By searching for transcription factors that function at these elements, we identified NFIA and ATF3 as drivers of astrocyte differentiation from neural precursor cells while RUNX2 promotes astrocyte maturation. These transcription factors facilitate stage-specific gene expression programs by switching the chromatin state of their target regulatory elements from primed to active. Altogether, these findings provide integrated insights into the genetic and epigenetic mechanisms steering the trajectory of astrogliogenesis.


ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.

  • Xi Chen‎ et al.
  • PLoS computational biology‎
  • 2021‎

Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIP-seq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on co-localization of ChIP-seq peaks, often many weak binding events are missed, especially for mediators, resulting in incomplete identification of modules. To address this problem, we develop a ChIP-seq data-driven Gibbs Sampler to infer Modules (ChIP-GSM) using a Bayesian framework that integrates ChIP-seq profiles of multiple TFs. ChIP-GSM samples read counts of module TFs iteratively to estimate the binding potential of a module to each region and, across all regions, estimates the module abundance. Using inferred module-region probabilistic bindings as feature units, ChIP-GSM then employs logistic regression to predict active regulatory elements. Validation of ChIP-GSM predicted regulatory regions on multiple independent datasets sharing the same context confirms the advantage of using TF modules for predicting regulatory activity. In a case study of K562 cells, we demonstrate that the ChIP-GSM inferred modules form as groups, activate gene expression at different time points, and mediate diverse functional cellular processes. Hence, ChIP-GSM infers biologically meaningful TF modules and improves the prediction accuracy of regulatory region activities.


MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction.

  • Guangde Zhang‎ et al.
  • PloS one‎
  • 2015‎

Myocardial infarction (MI) is a severe coronary artery disease and a leading cause of mortality and morbidity worldwide. However, the molecular mechanisms of MI have yet to be fully elucidated. In this study, we compiled MI-related genes, MI-related microRNAs (miRNAs) and known human transcription factors (TFs), and we then identified 1,232 feed-forward loops (FFLs) among these miRNAs, TFs and their co-regulated target genes through integrating target prediction. By merging these FFLs, the first miRNA and TF mediated regulatory network for MI was constructed, from which four regulators (SP1, ESR1, miR-21-5p and miR-155-5p) and three regulatory modules that might play crucial roles in MI were then identified. Furthermore, based on the miRNA and TF mediated regulatory network and literature survey, we proposed a pathway model for miR-21-5p, the miR-29 family and SP1 to demonstrate their potential co-regulatory mechanisms in cardiac fibrosis, apoptosis and angiogenesis. The majority of the regulatory relations in the model were confirmed by previous studies, which demonstrated the reliability and validity of this miRNA and TF mediated regulatory network. Our study will aid in deciphering the complex regulatory mechanisms involved in MI and provide putative therapeutic targets for MI.


Combinatorial transcription factor binding encodes cis-regulatory wiring of forebrain GABAergic neurogenesis.

  • Rinaldo Catta-Preta‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Transcription factors (TFs) bind combinatorially to genomic cis-regulatory elements (cREs), orchestrating transcription programs. While studies of chromatin state and chromosomal interactions have revealed dynamic neurodevelopmental cRE landscapes, parallel understanding of the underlying TF binding lags. To elucidate the combinatorial TF-cRE interactions driving mouse basal ganglia development, we integrated ChIP-seq for twelve TFs, H3K4me3-associated enhancer-promoter interactions, chromatin and transcriptional state, and transgenic enhancer assays. We identified TF-cREs modules with distinct chromatin features and enhancer activity that have complementary roles driving GABAergic neurogenesis and suppressing other developmental fates. While the majority of distal cREs were bound by one or two TFs, a small proportion were extensively bound, and these enhancers also exhibited exceptional evolutionary conservation, motif density, and complex chromosomal interactions. Our results provide new insights into how modules of combinatorial TF-cRE interactions activate and repress developmental expression programs and demonstrate the value of TF binding data in modeling gene regulatory wiring.


Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain.

  • Jing Li‎ et al.
  • Genome biology‎
  • 2007‎

The basic/helix-loop-helix (bHLH) proteins are important components of the transcriptional regulatory network, controlling a variety of biological processes, especially the development of the central nervous system. Until now, reports describing the regulatory network of the bHLH transcription factor (TF) family have been scarce. In order to understand the regulatory mechanisms of bHLH TFs in mouse brain, we inferred their regulatory network from genome-wide gene expression profiles with the module networks method.


Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species.

  • Anne Laurençon‎ et al.
  • Genome biology‎
  • 2007‎

Regulatory factor X (RFX) transcription factors play a key role in ciliary assembly in nematode, Drosophila and mouse. Using the tremendous advantages of comparative genomics in closely related species, we identified novel genes regulated by dRFX in Drosophila.


Stability and function of regulatory T cells expressing the transcription factor T-bet.

  • Andrew G Levine‎ et al.
  • Nature‎
  • 2017‎

Adaptive immune responses are tailored to different types of pathogens through differentiation of naive CD4 T cells into functionally distinct subsets of effector T cells (T helper 1 (TH1), TH2, and TH17) defined by expression of the key transcription factors T-bet, GATA3, and RORγt, respectively. Regulatory T (Treg) cells comprise a distinct anti-inflammatory lineage specified by the X-linked transcription factor Foxp3 (refs 2, 3). Paradoxically, some activated Treg cells express the aforementioned effector CD4 T cell transcription factors, which have been suggested to provide Treg cells with enhanced suppressive capacity. Whether expression of these factors in Treg cells-as in effector T cells-is indicative of heterogeneity of functionally discrete and stable differentiation states, or conversely may be readily reversible, is unknown. Here we demonstrate that expression of the TH1-associated transcription factor T-bet in mouse Treg cells, induced at steady state and following infection, gradually becomes highly stable even under non-permissive conditions. Loss of function or elimination of T-bet-expressing Treg cells-but not of T-bet expression in Treg cells-resulted in severe TH1 autoimmunity. Conversely, following depletion of T-bet- Treg cells, the remaining T-bet+ cells specifically inhibited TH1 and CD8 T cell activation consistent with their co-localization with T-bet+ effector T cells. These results suggest that T-bet+ Treg cells have an essential immunosuppressive function and indicate that Treg cell functional heterogeneity is a critical feature of immunological tolerance.


TMREC: A Database of Transcription Factor and MiRNA Regulatory Cascades in Human Diseases.

  • Shuyuan Wang‎ et al.
  • PloS one‎
  • 2015‎

Over the past decades, studies have reported that the combinatorial regulation of transcription factors (TFs) and microRNAs (miRNAs) is essential for the appropriate execution of biological events and developmental processes. Dysregulations of these regulators often cause diseases. However, there are no available resources on the regulatory cascades of TFs and miRNAs in the context of human diseases. To fulfill this vacancy, we established the TMREC database in this study. First, we integrated curated transcriptional and post-transcriptional regulations to construct the TF and miRNA regulatory network. Next, we identified all linear paths using the Breadth First Search traversal method. Finally, we used known disease-related genes and miRNAs to measure the strength of association between cascades and diseases. Currently, TMREC consists of 74,248 cascades and 25,194 cascade clusters, involving in 412 TFs, 266 miRNAs and 545 diseases. With the expanding of experimental support regulation data, we will regularly update the database. TMREC aims to help experimental biologists to comprehensively analyse gene expression regulation, to understand the aetiology and to predict novel therapeutic targets. TMREC is freely available at http://bioinfo.hrbmu.edu.cn/TMREC/.


Characterization of the human RFX transcription factor family by regulatory and target gene analysis.

  • Debora Sugiaman-Trapman‎ et al.
  • BMC genomics‎
  • 2018‎

Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes.


Exploration of prognosis-related microRNA and transcription factor co-regulatory networks across cancer types.

  • Ruijiang Li‎ et al.
  • RNA biology‎
  • 2019‎

The study of cancer prognosis serves as an important part of cancer research. Large-scale cancer studies have identified numerous genes and microRNAs (miRNAs) associated with prognosis. These informative genes and miRNAs represent potential biomarkers to predict survival and to elucidate the molecular mechanism of tumour progression. MiRNAs and transcription factors (TFs) can work cooperatively as essential mediators of gene expression, and their dysregulation affects cancer prognosis. A panoramic view of cancer prognosis at the system level, considering the co-regulation roles of miRNA and TF, remains elusive. Here, we establish 12 prognosis-related miRNA-TF co-regulatory networks. The characteristics of prognostic target genes and their regulators in the network are depicted. Although the target genes and co-regulatory patterns exhibit cancer-specific properties, some miRNAs and TFs are highly conserved across cancers. We illustrate and interpret the roles of these conserved regulators by building a model associated with cancer hallmarks, functional enrichment analysis, network community detection, and exhaustive literature research. The elaborated system-level prognostic miRNA-TF co-regulation landscape, including the highlighted roles of conserved regulators, provides a novel and powerful insights into further biological and medical discoveries.


Construction and analysis of dynamic transcription factor regulatory networks in the progression of glioma.

  • Yongsheng Li‎ et al.
  • Scientific reports‎
  • 2015‎

The combinatorial cross-regulation of transcription factors (TFs) plays an important role in cellular identity and function; however, the dynamic regulation of TFs during glioma progression remains largely unknown. Here, we used the genome-wide expression of TFs to construct an extensive human TF network comprising interactions among 513 TFs and to analyse the dynamics of the TF-TF network during glioma progression. We found that the TF regulatory networks share a common architecture and that the topological structures are conserved. Strikingly, despite the conservation of the network architecture, TF regulatory networks are highly grade specific, and TF circuitry motifs are dynamically rewired during glioma progression. In addition, the most frequently observed structure in the grade-specific TF networks was the feedforward loop (FFL). We described applications that show how investigating the behaviour of FFLs in glioblastoma can reveal FFLs (such as RARG-NR1I2-CDX2) that are associated with prognosis. We constructed comprehensive TF-TF networks and systematically analysed the circuitry, dynamics, and topological principles of the networks during glioma progression, which will further enhance our understanding of the functions of TFs in glioma.


Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in Clostridium thermocellum.

  • Skyler D Hebdon‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Clostridium thermocellum is a thermophilic bacterium recognized for its natural ability to effectively deconstruct cellulosic biomass. While there is a large body of studies on the genetic engineering of this bacterium and its physiology to-date, there is limited knowledge in the transcriptional regulation in this organism and thermophilic bacteria in general. The study herein is the first report of a large-scale application of DNA-affinity purification sequencing (DAP-seq) to transcription factors (TFs) from a bacterium. We applied DAP-seq to > 90 TFs in C. thermocellum and detected genome-wide binding sites for 11 of them. We then compiled and aligned DNA binding sequences from these TFs to deduce the primary DNA-binding sequence motifs for each TF. These binding motifs are further validated with electrophoretic mobility shift assay (EMSA) and are used to identify individual TFs' regulatory targets in C. thermocellum. Our results led to the discovery of novel, uncharacterized TFs as well as homologues of previously studied TFs including RexA-, LexA-, and LacI-type TFs. We then used these data to reconstruct gene regulatory networks for the 11 TFs individually, which resulted in a global network encompassing the TFs with some interconnections. As gene regulation governs and constrains how bacteria behave, our findings shed light on the roles of TFs delineated by their regulons, and potentially provides a means to enable rational, advanced genetic engineering of C. thermocellum and other organisms alike toward a desired phenotype.


TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse.

  • Yuexin Zhang‎ et al.
  • Nucleic acids research‎
  • 2022‎

Transcription co-factors (TcoFs) play crucial roles in gene expression regulation by communicating regulatory cues from enhancers to promoters. With the rapid accumulation of TcoF associated chromatin immunoprecipitation sequencing (ChIP-seq) data, the comprehensive collection and integrative analyses of these data are urgently required. Here, we developed the TcoFBase database (http://tcof.liclab.net/TcoFbase), which aimed to document a large number of available resources for mammalian TcoFs and provided annotations and enrichment analyses of TcoFs. TcoFBase curated 2322 TcoFs and 6759 TcoFs associated ChIP-seq data from over 500 tissues/cell types in human and mouse. Importantly, TcoFBase provided detailed and abundant (epi) genetic annotations of ChIP-seq based TcoF binding regions. Furthermore, TcoFBase supported regulatory annotation information and various functional annotations for TcoFs. Meanwhile, TcoFBase embedded five types of TcoF regulatory analyses for users, including TcoF gene set enrichment, TcoF binding genomic region annotation, TcoF regulatory network analysis, TcoF-TF co-occupancy analysis and TcoF regulatory axis analysis. TcoFBase was designed to be a useful resource that will help reveal the potential biological effects of TcoFs and elucidate TcoF-related regulatory mechanisms.


Regulatory network of miRNA, lncRNA, transcription factor and target immune response genes in bovine mastitis.

  • Ashley R Tucker‎ et al.
  • Scientific reports‎
  • 2021‎

Pre- and post-transcriptional modifications of gene expression are emerging as foci of disease studies, with some studies revealing the importance of non-coding transcripts, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). We hypothesize that transcription factors (TFs), lncRNAs and miRNAs modulate immune response in bovine mastitis and could potentially serve as disease biomarkers and/or drug targets. With computational analyses, we identified candidate genes potentially regulated by miRNAs and lncRNAs base pair complementation and thermodynamic stability of binding regions. Remarkably, we found six miRNAs, two being bta-miR-223 and bta-miR-24-3p, to bind to several targets. LncRNAs NONBTAT027932.1 and XR_003029725.1, were identified to target several genes. Functional and pathway analyses revealed lipopolysaccharide-mediated signaling pathway, regulation of chemokine (C-X-C motif) ligand 2 production and regulation of IL-23 production among others. The overarching interactome deserves further in vitro/in vivo explication for specific molecular regulatory mechanisms during bovine mastitis immune response and could lay the foundation for development of disease markers and therapeutic intervention.


CMTCN: a web tool for investigating cancer-specific microRNA and transcription factor co-regulatory networks.

  • Ruijiang Li‎ et al.
  • PeerJ‎
  • 2018‎

Transcription factors (TFs) and microRNAs (miRNAs) are well-characterized trans-acting essential players in gene expression regulation. Growing evidence indicates that TFs and miRNAs can work cooperatively, and their dysregulation has been associated with many diseases including cancer. A unified picture of regulatory interactions of these regulators and their joint target genes would shed light on cancer studies. Although online resources developed to support probing of TF-gene and miRNA-gene interactions are available, online applications for miRNA-TF co-regulatory analysis, especially with a focus on cancers, are lacking. In light of this, we developed a web tool, namely CMTCN (freely available at http://www.cbportal.org/CMTCN), which constructs miRNA-TF co-regulatory networks and conducts comprehensive analyses within the context of particular cancer types. With its user-friendly provision of topological and functional analyses, CMTCN promises to be a reliable and indispensable web tool for biomedical studies.


Investigation of MicroRNA and transcription factor mediated regulatory network for silicosis using systems biology approach.

  • J K Choudhari‎ et al.
  • Scientific reports‎
  • 2021‎

Silicosis is a major health issue among workers exposed to crystalline silica. Genetic susceptibility has been implicated in silicosis. The present research demonstrates key regulatory targets and propagated network of gene/miRNA/transcription factor (TF) with interactions responsible for silicosis by integrating publicly available microarray data using a systems biology approach. Array quality is assessed with the Quality Metrics package of Bioconductor, limma package, and the network is constructed using Cytoscape. We observed and enlist 235 differentially expressed genes (DEGs) having up-regulation expression (85 nos) and down-regulation expression (150 nos.) in silicosis; and 24 TFs for the regulation of these DEGs entangled with thousands of miRNAs. Functional enrichment analysis of the DEGs enlighten that, the maximum number of DEGs are responsible for biological process viz, Rab proteins signal transduction (11 nos.) and Cellular Senescence (20 nos.), whereas IL-17 signaling pathway (16 nos.) and Signalling by Nuclear Receptors (14 nos.) etc. are Biological Pathway involving more DEGs. From the identified 1100 high target microRNA (miRNA)s involved in silicosis, 1055 miRNAs are found to relate with down-regulated genes and 847 miRNAs with up-regulated genes. The CDK19 gene (Up-regulated) is associated with 617 miRNAs whereas down-regulated gene ARID5B is regulated by as high as 747 high target miRNAs. In Prediction of Small-molecule signatures, maximum scoring small-molecule combinations for the DEGs have shown that CGP-60774 (with 20 combinations), alvocidib (with 15 combinations) and with AZD-7762 (24 combinations) with few other drugs having the high probability of success.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: