Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 117 papers

Sonographic consensual pupillary reflex.

  • Jeffrey Wiswell‎ et al.
  • The western journal of emergency medicine‎
  • 2012‎

Patients suffering from severe orbital trauma are at risk for numerous complications, including orbital compartment syndromes. This can result in an afferent pupillary defect, which must be evaluated for on physical examination. Unfortunately, these at-risk patients are often challenging to examine properly due to surrounding edema. Point-of-care ultrasonography can be used as an adjunct to the standard examination in this situation.


Pupillary Light Reflex Induced by Two-Photon Vision.

  • Agnieszka Zielinska‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

Two-photon vision relies on the perception of pulsed infrared light due to two-photon absorption in visual pigments. This study aimed to measure human pupil reaction caused by a two-photon 1040-nm stimulus and compare it with pupil responses elicited by 520-nm stimuli of similar color.


The Pupillary Light Reflex as a Biomarker of Concussion.

  • Frederick Robert Carrick‎ et al.
  • Life (Basel, Switzerland)‎
  • 2021‎

The size of our pupils changes continuously in response to variations in ambient light levels, a process known as the pupillary light reflex (PLR). The PLR is not a simple reflex as its function is modulated by cognitive brain function and any long-term changes in brain function secondary to injury should cause a change in the parameters of the PLR. We performed a retrospective clinical review of the PLR of our patients using the BrightLamp Reflex iPhone app. The PLR variables of latency, maximum pupil diameter (MaxPD), minimum pupil diameter (MinPD), maximum constriction velocity (MCV), and the 75% recovery time (75% PRT) were associated with significant differences between subjects who had suffered a concussion and those that had not. There were also significant differences in PLR metrics over the life span and between genders and those subjects with and without symptoms. The differences in PLR metrics are modulated not only by concussion history but also by gender and whether or not the person has symptoms associated with a head injury. A concussive injury to the brain is associated with changes in the PLR that persist over the life span, representing biomarkers that might be used in clinical diagnosis, treatment, and decision making.


Pharmacological Isolation of Cognitive Components Influencing the Pupillary Light Reflex.

  • Stuart R Steinhauer‎ et al.
  • Journal of ophthalmology‎
  • 2015‎

Cognitive operations can be detected by reduction of the pupillary light response. Neurophysiological pathways mediating this reduction have not been distinguished. We utilized selective blockade of pupillary sphincter or dilator muscles to isolate parasympathetic or sympathetic activity during cognition, without modifying central processes. Pupil diameter was measured during the light reaction in 29 normal adults under three processing levels: No Task, during an easy task (Add 1), or a difficult task (Subtract 7). At three separate sessions, the pupil was treated with placebo, tropicamide (blocking the muscarinic sphincter receptor), or dapiprazole (blocking the adrenergic dilator receptor). With placebo, pupil diameter increased with increasing task difficulty. The light reaction was reduced only in the Subtract 7 condition. Dapiprazole (which decreased overall diameter) showed similar task-related changes in diameter and light reflex as for placebo. Following tropicamide (which increased overall diameter), there was a further increase in diameter only in the difficult task. Findings suggest two separate inhibitory components at the parasympathetic oculomotor center. Changes in baseline diameter are likely related to reticular activation. Inhibition of the light reaction in the difficult task is likely associated with cortical afferents. Sustained sympathetic activity also was present during the difficult task.


Altered pupillary light reflex in PACAP receptor 1-deficient mice.

  • Anna Engelund‎ et al.
  • Brain research‎
  • 2012‎

The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances.


Endogenous Opioid Signaling in the Mouse Retina Modulates Pupillary Light Reflex.

  • Allison M Cleymaet‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Opioid peptides and their receptors are expressed in the mammalian retina; however, little is known about how they might affect visual processing. The melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), which mediate important non-image-forming visual processes such as the pupillary light reflex (PLR), express β-endorphin-preferring, µ-opioid receptors (MORs). The objective of the present study was to elucidate if opioids, endogenous or exogenous, modulate pupillary light reflex (PLR) via MORs expressed by ipRGCs. MOR-selective agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO) or antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) was administered via intravitreal injection. PLR was recorded in response to light stimuli of various intensities. DAMGO eliminated PLR evoked by light with intensities below melanopsin activation threshold but not that evoked by bright blue irradiance that activated melanopsin signaling, although in the latter case, DAMGO markedly slowed pupil constriction. CTAP or genetic ablation of MORs in ipRGCs slightly enhanced dim-light-evoked PLR but not that evoked by a bright blue stimulus. Our results suggest that endogenous opioid signaling in the retina contributes to the regulation of PLR. The slowing of bright light-evoked PLR by DAMGO is consistent with the observation that systemically applied opioids accumulate in the vitreous and that patients receiving chronic opioid treatment have slow PLR.


Classical Photoreceptors Are Primarily Responsible for the Pupillary Light Reflex in Mouse.

  • Varsha Jain‎ et al.
  • PloS one‎
  • 2016‎

Pupillary light reflex (PLR) is an important clinical tool to assess the integrity of visual pathways. The available evidence suggests that melanopsin-expressing retinal ganglion cells (mRGCs) mediate PLR-driven by the classical photoreceptors (rods and cones) at low irradiances and by melanopsin activation at high irradiances. However, genetic or pharmacological elimination of melanopsin does not completely abolish PLR at high irradiances, raising the possibility that classical photoreceptors may have a role even at high irradiances. Using an inducible mouse model of photoreceptor degeneration, we asked whether classical photoreceptors are responsible for PLR at all irradiances, and found that the PLR was severely attenuated at all irradiances. Using multiple approaches, we show that the residual PLR at high irradiances in this mouse was primarily from the remnant rods and cones, with a minor contribution from melanopsin activation. In contrast, in rd1 mouse where classical photoreceptor degeneration occurs during development, the PLR was absent at low irradiances but intact at high irradiances, as reported previously. Since mRGCs receive inputs from classical photoreceptors, we also asked whether developmental loss of classical photoreceptors as in rd1 mouse leads to compensatory takeover of the high-irradiance PLR by mRGCs. Specifically, we looked at a distinct subpopulation of mRGCs that express Brn3b transcription factor, which has been shown to mediate PLR. We found that rd1 mouse had a significantly higher proportion of Brn3b-expressing M1 type of mRGCs than in the inducible model. Interestingly, inducing classical photoreceptor degeneration during development also resulted in a higher proportion of Brn3b-expressing M1 cells and partially rescued PLR at high irradiances. These results suggest that classical photoreceptors are primarily responsible for PLR at all irradiances, while melanopsin activation makes a minor contribution at very high irradiances.


Spectral dependency of the human pupillary light reflex. Influences of pre-adaptation and chronotype.

  • Johannes Zauner‎ et al.
  • PloS one‎
  • 2022‎

Non-visual photoreceptors (ipRGCs) and rods both exert a strong influence on the human pupil, yet pupil models regularly use cone-derived sensitivity as their basis. This inconsistency is further exacerbated by the fact that circadian effects can modulate the wavelength sensitivity. We assessed the pupillary reaction to narrowband light stimuli in the mesopic range. Pupil size for eighty-three healthy participants with normal color vision was measured in nine experimental protocols with varying series of continuous or discontinuous light stimuli under Ganzfeld conditions, presented after 90 seconds of dark adaptation. One hundred and fifty series of stimulation were conducted across three experiments, and were analyzed for wavelength-dependency on the normalized pupillary constriction (nPC), conditional on experimental settings and individual traits. Traits were surveyed by questionnaire; color vision was tested by Ishihara plates or the Lanthony D15 test. Data were analyzed with generalized additive mixed models (GAMM). The normalized pupillary constriction response is consistent with L+M-cone derived sensitivity when the series of light stimuli is continuous, i.e., is not interrupted by periods of darkness, but not otherwise. The results also show that a mesopic illuminance weighing led to an overall best prediction of pupillary constriction compared to other types of illuminance measures. IpRGC influence on nPC is not readily apparent from the results. When we explored the interaction of chronotype and time of day on the wavelength dependency, differences consistent with ipRGC influence became apparent. The models indicate that subjects of differing chronotype show a heightened or lowered sensitivity to short wavelengths, depending on their time of preference. IpRGC influence is also seen in the post-illumination pupil reflex if the prior light-stimulus duration is one second. However, shorter wavelengths than expected become more important if the light-stimulus duration is fifteen or thirty seconds. The influence of sex on nPC was present, but showed no interaction with wavelength. Our results help to define the conditions, under which the different wavelength sensitivities in the literature hold up for narrowband light settings. The chronotype effect might signify a mechanism for strengthening the individual´s chronotype. It could also be the result of the participant's prior exposure to light (light history). Our explorative findings for this effect demand replication in a controlled study.


Pupillary light reflex deficits in a canine model of late infantile neuronal ceroid lipofuscinosis.

  • Rebecca E H Whiting‎ et al.
  • Experimental eye research‎
  • 2013‎

Late-infantile neuronal ceroid lipofuscinosis (CLN2) is a hereditary neurological disorder characterized by progressive retinal degeneration and vision loss, cognitive and motor decline, seizures, and pronounced brain atrophy. The progressive loss of neurological functions eventually leads to death, usually by the early teenage years. Utilizing a canine model of CLN2, therapeutic studies to inhibit the brain and retinal degenerations are currently under way. Using this dog model, studies were undertaken to compare quantitative assessments of the pupillary light reflex (PLR) and electroretinography (ERG) as tools for evaluating the effects of the disease on retinal function. The PLR and ERG were recorded in normal and CLN2-affected Dachshunds at 2 month intervals between the ages of 4 and 10 months. Using custom instrumentation for quantitative PLR assessments, a series of white light stimuli of varying intensity was used to elicit pupil constriction, and pupil images were recorded using continuous infrared illumination and an infrared-sensitive camera. Electroretinography was used to evaluate retinal function in the same dogs. As the disease progressed, affected dogs exhibited progressive and profound declines in ERG amplitudes under both scotopic and photopic conditions. With low intensity light stimuli, CLN2 was also accompanied by progressive deficits in the PLR. Changes in the PLR to dim light stimuli included significant deficits in latency, constriction velocity, constriction amplitude, and redilation velocity. However, despite the almost complete loss of detectable ERG responses by disease end stage, the PLR to bright stimuli was well preserved throughout the disease progression. These findings demonstrate that the PLR is much more sensitive than the ERG in detecting residual retinal function in animal models of retinal degenerative disease. The preservation of the PLR in dogs with profoundly depressed ERGs correlates with a preservation of visually-mediated behavior even late in the disease progression. Quantitative analysis of the PLR has potential as a biomarker in animal models of retinal degenerative diseases and in evaluating the efficacy of therapeutic interventions in preserving retinal function.


Association between melanopsin gene polymorphism (I394T) and pupillary light reflex is dependent on light wavelength.

  • Sang-iL Lee‎ et al.
  • Journal of physiological anthropology‎
  • 2013‎

Our aim was to determine the association between melanopsin gene polymorphism and pupillary light reflex under diverse photic conditions, including different intensities and wavelengths.


Pupillary reflex and behavioral masking responses to light as functional measures of retinal degeneration in mice.

  • Ethan O Contreras‎ et al.
  • PloS one‎
  • 2021‎

Pre-clinical testing of retinal pathology and treatment efficacy depends on reliable and valid measures of retinal function. The electroretinogram (ERG) and tests of visual acuity are the ideal standard, but can be unmeasurable while useful vision remains. Non-image-forming responses to light such as the pupillary light reflex (PLR) are attractive surrogates. However, it is not clear how accurately such responses reflect changes in visual capability in specific disease models. The purpose of this study was to test whether measures of non-visual responses to light correlate with previously determined visual function in two photoreceptor degenerations.


The pupillary light reflex distinguishes between circadian and non-circadian delayed sleep phase disorder (DSPD) phenotypes in young adults.

  • Elise M McGlashan‎ et al.
  • PloS one‎
  • 2018‎

This study investigated the utility of the pupillary light reflex as a method of differentiating DSPD patients with delayed melatonin timing relative to desired/required sleep time (circadian type) and those with non-delayed melatonin timing (non-circadian type). All participants were young adults, with a total of 14 circadian DSPD patients (M = 28.14, SD = 5.26), 12 non-circadian DSPD patients (M = 29.42, SD = 11.51) and 51 healthy controls (M = 21.47 SD = 3.16) completing the protocol. All participants were free of central nervous system acting medications and abstained from caffeine and alcohol on the day of the assessment. Two pupillary light reflex measurements were completed by each participant, one with a 1s dim (~10 lux) light exposure, and one with a 1s bright (~1500 lux) light exposure. Circadian DSPD patients showed a significantly faster pupillary light reflex than both non-circadian DSPD patients and healthy controls. Non-circadian patients and healthy controls did not differ significantly. Receiver operating characteristic curves were generated to determine the utility of mean and maximum constriction velocity in differentiating the two DSPD phenotypes, and these demonstrated high levels of sensitivity (69.23--100%) and specificity (66.67-91.67%) at their optimal cut offs. The strongest predictor of DSPD phenotype was the mean constriction velocity to bright light (AUC = 0.87). These results support the potential for the pupillary light reflex to clinically differentiate between DSPD patients with normal vs. delayed circadian timing relative to desired bedtime, without the need for costly and time-consuming circadian assessments.


A haploscope based binocular pupillometer system to quantify the dynamics of direct and consensual Pupillary Light Reflex.

  • Najiya S K Meethal‎ et al.
  • Scientific reports‎
  • 2021‎

This study described the development of a haploscope-based pupillometer for the parametrization of the Pupillary Light Reflex (PLR), and its feasibility in a set of 30 healthy subjects (light or dark-colored irides) and five patients diagnosed with Relative Afferent Pupillary Defect (RAPD). Our supplementary aim focused on evaluating the influence of iris colour on the PLR to decide whether a difference in PLR parameters should be anticipated when this system is used across ethnicities. All the participants underwent a customized pupillometry protocol and the generated pupil traces, captured by an eye tracker, were analyzed using exponential fits to derive PLR parameters. A Pupil Response Symmetry (PRS) coefficient was calculated to predict the presence of RAPD. The mean (SD) Initial PD during dilation (3.2 (0.5) mm) and the minimum PD during constriction (2.9 (0.4) mm) in the light iris group had a statistically significant (p < 0.001) higher magnitude compared to the dark iris group. The normal limits of the PRS coefficient ranged from - 0.20 to + 1.07 and all RAPD patients were outside the calculated normal limits. This proposed system, analysis strategies, and the tested metrics showed good short-term repeatability and the potential in detecting pupil abnormalities in neuro-ophthalmic diseases.


Glutamatergic neurotransmission from melanopsin retinal ganglion cells is required for neonatal photoaversion but not adult pupillary light reflex.

  • Anton Delwig‎ et al.
  • PloS one‎
  • 2013‎

Melanopsin-expressing retinal ganglion cells (mRGCs) in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR). MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide) to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2) selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.


Enzyme replacement therapy delays pupillary light reflex deficits in a canine model of late infantile neuronal ceroid lipofuscinosis.

  • Rebecca E H Whiting‎ et al.
  • Experimental eye research‎
  • 2014‎

Late-infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a hereditary neurological disorder characterized by progressive retinal degeneration and vision loss, cognitive and motor decline, seizures, and pronounced brain atrophy. This fatal pediatric disease is caused by mutations in the CLN2 gene which encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Utilizing a TPP1-/- Dachshund model of CLN2 disease, studies were conducted to assess the effects of TPP1 enzyme replacement administered directly to the CNS on disease progression. Recombinant human TPP1 (rhTPP1) or artificial cerebrospinal fluid vehicle was administered to CLN2-affected dogs via infusion into the CSF. Untreated and vehicle treated affected dogs exhibited progressive declines in pupillary light reflexes (PLRs) and electroretinographic (ERG) responses to light stimuli. Studies were undertaken to determine whether CSF administration of rhTPP1 alters progression of the PLR and ERG deficits in the canine model. rhTPP1 administration did not inhibit the decline in ERG responses, as rhTPP1 treated, vehicle treated, and untreated dogs all exhibited similar progressive and profound declines in ERG amplitudes. However, in some of the dogs treated with rhTPP1 there were substantial delays in the appearance and progression of PLR deficits compared with untreated or vehicle treated affected dogs. These findings indicate that CSF administration of TPP1 can attenuate functional impairment of neural pathways involved in mediating the PLR but does not prevent loss of retinal responses detectable with ERG.


The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple-dose trial.

  • Dora Koller‎ et al.
  • British journal of clinical pharmacology‎
  • 2020‎

Pupillography is a noninvasive and cost-effective method to determine autonomic nerve activity. Genetic variants in cytochrome P450 (CYP), dopamine receptor (DRD2, DRD3), serotonin receptor (HTR2A, HTR2C) and ATP-binding cassette subfamily B (ABCB1) genes, among others, were previously associated with the pharmacokinetics and pharmacodynamics of antipsychotic drugs. Our aim was to evaluate the effects of aripiprazole and olanzapine on pupillary light reflex related to pharmacogenetics.


Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study.

  • Mauro Oddo‎ et al.
  • Intensive care medicine‎
  • 2018‎

To assess the ability of quantitative pupillometry [using the Neurological Pupil index (NPi)] to predict an unfavorable neurological outcome after cardiac arrest (CA).


Clinical potential of pupillary light reflex parameters as objective indicators reflecting chronic rhinosinusitis-specific quality of life: a 12-month prospective longitudinal study.

  • Hiroatsu Hatsukawa‎ et al.
  • Scientific reports‎
  • 2021‎

Pupillary light reflex (PLR) and heart rate variability (HRV) parameters can be objective indicators of chronic rhinosinusitis (CRS) status from the viewpoint of autonomic nervous system activity. This study aimed to establish objective indicators for CRS using the 22-item Sino-Nasal Outcome Test (SNOT-22) and PLR/HRV parameters. Sixty-seven patients were prospectively and longitudinally followed up after surgical treatment. We investigated changes in SNOT-22 scores, representing CRS-specific quality of life (QOL). We prepared two models: linear regression model adjusting clinical factors as predictor variables (model 1) and linear mixed-effects model adjusting clinical factors and among-individual variability (model 2). We compared Akaike's information criterion (AIC) values and regression coefficients. The model with lower AIC values was defined as the better-fit model. Model 2 showed lower AIC values in all parameters (better-fit model). Three parameters showed opposite results between the two models. The better-fit models showed significances in the five PLR parameters but not in any HRV parameters. Among these PLR parameters, constriction latency can be the most robust indicator because of the narrowest 95% confidence intervals. Adjusting the among-individual variability while investigating clinical potential of PLR/HRV parameters to reflect CRS-specific QOL can improve the model fit, thereby reaching robust conclusions from obtained data.


Normal behavioral responses to light and darkness and the pupillary light reflex are dependent upon the olivary pretectal nucleus in the diurnal Nile grass rat.

  • Andrew J Gall‎ et al.
  • Neuroscience‎
  • 2017‎

The olivary pretectal nucleus (OPT) is a midbrain structure that receives reciprocal bilateral retinal projections, is involved in the pupillary light reflex, and connects reciprocally with the intergeniculate leaflet (IGL), a retinorecipient brain region that mediates behavioral responses to light pulses (i.e., masking) in diurnal Nile grass rats. Here, we lesioned the OPT and evaluated behavioral responses in grass rats to various lighting conditions, as well as their anxiety-like responses to light exposure. While control grass rats remained diurnal, grass rats with OPT lesions exhibited a more night-active pattern under 12h:12h light-dark (LD) conditions. However, when placed in constant darkness, OPT-lesioned grass rats became more active during their subjective day, suggesting that an exaggerated masking response to light may be responsible for the effect of OPT lesions on locomotor activity in LD. To test this hypothesis, we presented dark and light pulses to controls and grass rats with OPT lesions; controls increased their activity in response to light, whereas those with OPT lesions significantly increased activity in response to darkness. Further, when placed in a 7-h ultradian LD cycle, animals with OPT lesions were more active during darkness than controls. OPT lesions also abolished the pupillary light reflex, but did not affect anxiety-like behaviors. Finally, in animals with OPT lesions, light did not induce Fos expression in the ventrolateral geniculate nucleus, as it did in controls. Altogether, these results suggest that masking responses to light and darkness are dependent upon nuclei within the subcortical visual shell in grass rats.


Pupillary responses in non-proliferative diabetic retinopathy.

  • Jason C Park‎ et al.
  • Scientific reports‎
  • 2017‎

The goal of this study was to determine the extent of rod-, cone-, and melanopsin-mediated pupillary light reflex (PLR) abnormalities in diabetic patients who have non-proliferative diabetic retinopathy (NPDR). Fifty diabetic subjects who have different stages of NPDR and 25 age-equivalent, non-diabetic controls participated. PLRs were measured in response to full-field, brief-flash stimuli under conditions that target the rod, cone, and intrinsically-photosensitive (melanopsin) retinal ganglion cell pathways. Pupil responses were compared among the subjects groups using age-corrected linear mixed models. Compared to control, the mean baseline pupil diameters were significantly smaller for all patient groups in the dark (all p < 0.001) and for the moderate-severe NPDR group in the light (p = 0.003). Pairwise comparisons indicated: (1) the mean melanopsin-mediated PLR was significantly reduced in the mild and moderate-severe groups (both p < 0.001); (2) the mean cone-mediated PLR was reduced significantly in the moderate-severe group (p = 0.008); (3) no significant differences in the mean rod-mediated responses. The data indicate abnormalities in NPDR patients under conditions that separately assess pupil function driven by different photoreceptor classes. The results provide evidence for compromised neural function in these patients and provide a promising approach for quantifying their neural abnormalities.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: