Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 148 papers

Polymorphisms in the tumor necrosis factor receptor genes affect the expression levels of membrane-bound type I and type II receptors.

  • Sergey V Sennikov‎ et al.
  • Mediators of inflammation‎
  • 2014‎

The level of TNF receptors on various cells of immune system and its association with the gene polymorphism were investigated. Determining the levels of membrane-bound TNFα receptors on peripheral blood mononuclear cells (PBMCs) was performed by flow cytometry using BD QuantiBRITE calibration particles. Soluble TNF α receptor (sTNFRs) levels were determined by ELISA and genotyping was determined by PCR-RFLP. Homozygous TT individuals at SNP -609G/T TNFRI (rs4149570) showed lower levels of sTNFRI compared to GG genotype carriers. Homozygous carriers of CC genotype at SNP -1207G/C TNFRI (rs4149569) had lower expression densities of membrane-bound TNFRI on intact CD14(+) monocytes compared to individuals with the GC genotype. The frequency differences in the CD3(+) and CD19(+) cells expressing TNFRII in relation to SNP -1709A/T TNFRII (rs652625) in healthy individuals were also determined. The genotype CC in SNP -3609C/T TNFRII (rs590368) was associated with a lower percentage of CD14(+) cells expressing TNFRII compared to individuals with the CT genotype. Patients with rheumatoid arthritis had no significant changes in the frequencies of genotypes. Reduced frequency was identified for the combination TNFRI -609GT + TNFRII -3609CC only. The polymorphisms in genes represent one of cell type-specific mechanisms affecting the expression levels of membrane-bound TNF α receptors and TNF α -mediated signaling.


Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors.

  • Supranee Phanthanawiboon‎ et al.
  • PloS one‎
  • 2016‎

Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection.


Distinct Tumor Necrosis Factor Alpha Receptors Dictate Stem Cell Fitness versus Lineage Output in Dnmt3a-Mutant Clonal Hematopoiesis.

  • Jennifer M SanMiguel‎ et al.
  • Cancer discovery‎
  • 2022‎

Clonal hematopoiesis resulting from the enhanced fitness of mutant hematopoietic stem cells (HSC) associates with both favorable and unfavorable health outcomes related to the types of mature mutant blood cells produced, but how this lineage output is regulated is unclear. Using a mouse model of a clonal hematopoiesis-associated mutation, DNMT3AR882/+ (Dnmt3aR878H/+), we found that aging-induced TNFα signaling promoted the selective advantage of mutant HSCs and stimulated the production of mutant B lymphoid cells. The genetic loss of the TNFα receptor TNFR1 ablated the selective advantage of mutant HSCs without altering their lineage output, whereas the loss of TNFR2 resulted in the overproduction of mutant myeloid cells without altering HSC fitness. These results nominate TNFR1 as a target to reduce clonal hematopoiesis and the risk of associated diseases and support a model in which clone size and mature blood lineage production can be independently controlled to modulate favorable and unfavorable clonal hematopoiesis outcomes.


Regulation of microglia effector functions by tumor necrosis factor signaling.

  • Ashley S Harms‎ et al.
  • Glia‎
  • 2012‎

The exact biological role of the cytokine tumor necrosis factor (TNF) in the central nervous system (CNS) is not well understood; but overproduction of TNF by activated microglia has been implicated in neuronal death, suggesting that TNF inhibition in the CNS may be a viable neuroprotective strategy. We investigated the role of TNF signaling in regulation of microglia effector functions using molecular, cellular, and functional analyses of postnatal and adult microglia populations in the CNS. No differences were found by flow cytometric analyses in the basal activation state between TNF-null and wild-type mice. Although TNF-null microglia displayed an atypical morphology with cytoplasmic vacuoles in response to stimulation with lipopolysaccharide (LPS), the phagocytic response of TNF-null microglia to Escherichia coli particles in vitro was normal and there were no signs of enhanced caspase 3 activation or apoptosis. Functionally, conditioned media from LPS-stimulated TNF-null microglia was found to have significantly reduced levels of IL-10, IL-6, IL-1β, IL-12, and CXCL1 relative to wild-type microglia and exerted no cytotoxic effects on neurally differentiated dopaminergic (DA) MN9D cells. In contrast, incubation of wild-type microglia with TNF inhibitors selectively depleted the levels of soluble TNF and its cytotoxicity on MN9D cells. To distinguish whether reduced cytotoxicity by LPS-activated TNF-null microglia could be attributed to deficient autocrine TNF signaling, we employed primary microglia deficient in one or both TNF receptors (TNFR1 and TNFR2) in co-culture with MN9D cells and found that neither receptor is required to elicit LPS-evoked TNF production and cytotoxicity on DA cells.


Tumor Necrosis Factor-α-Induced Protein 8-Like 2 Negatively Regulates Innate Immunity Against RNA Virus by Targeting RIG-I in Macrophages.

  • Ziqi Zou‎ et al.
  • Frontiers in immunology‎
  • 2021‎

A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.


Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1.

  • Martin Chopra‎ et al.
  • PloS one‎
  • 2013‎

Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4(+) T cells and CD4(+) forkhead box P3 (FoxP3)(+) regulatory T cells (Treg) but reduced numbers of CD8(+) T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8(+) T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.


Tumor necrosis factor α (TNF-α) receptor-I is required for TNF-α-mediated fulminant virus hepatitis caused by murine hepatitis virus strain-3 infection.

  • Huan Xu‎ et al.
  • Immunology letters‎
  • 2014‎

TNF-α plays an essential role in the pathogenesis of fulminant virus hepatitis (FH) caused by infection with murine hepatitis virus strain-3 (MHV-3). However, the specific TNF-α receptors (TNFR) involved in this disease and how they mediate this effect are uncertain. Here, we showed that the expression of TNFR1 and TNFR2 in the liver and spleen was triggered by MHV-3. However, only TNFR1(-/-) mice were resistant to MHV-3 mediated FH, as displayed by a dramatic decrease in tissue necrosis and cell apoptosis in the infected spleens and livers from TNFR1(-/-) mice, as well as prolonged survival in these mice compared to wild type littermate controls. Mechanistically, TNFR1 deficiency directly impeded the serum and tissue levels of fibrinogen-like protein 2 (FGL2), a virus-induced procoagulant molecule that promotes cell apoptosis. Additionally, the expression of apoptosis-associated molecules, Fas and Fas ligand (FasL) in the infected organs from TNFR1(-/-) mice were also decreased. Moreover, the infiltration of neutrophils rather than Foxp3(+) regulatory T cells, which produce proinflammatory factors and FGL2 directly, into the infected liver and spleen tissues was also decreased in TNFR1(-/-) mice. These combined results indicate that signaling through TNFR1 plays an essential role in the pathogenesis of FH caused by MHV-3 infection, and interruption of this signaling pathway could be useful for clinical therapy.


C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity.

  • Cheng-Lin Zhang‎ et al.
  • Cell calcium‎
  • 2017‎

C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.


Negative Regulation of Interferon-β Production by Alternative Splicing of Tumor Necrosis Factor Receptor-Associated Factor 3 in Ducks.

  • Xiaoqin Wei‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Tumor necrosis factor receptor-associated factor 3 (TRAF3), an intracellular signal transducer, is identified as an important component of Toll-like receptors and RIG-I-like receptors induced type I interferon (IFN) signaling pathways. Previous studies have clarified TRAF3 function in mammals, but little is known about the role of TRAF3 in ducks. Here, we cloned and characterized the full-length duck TRAF3 (duTRAF3) gene and an alternatively spliced isoform of duTRAF3 (duTRAF3-S) lacking the fragment encoding amino acids 217-319, from duck embryo fibroblasts (DEFs). We found that duTRAF3 and duTRAF3-S played different roles in regulating IFN-β production in DEFs. duTRAF3 through its TRAF domain interacted with duMAVS or duTRIF, leading to the production of IFN-β. However, duTRAF3-S, containing the TRAF domain, was unable to bind duMAVS or duTRIF due to the intramolecular binding between the N- and C-terminal of duTRAF3-S that blocked the function of its TRAF domain. Further analysis identified that duTRAF3-S competed with duTRAF3 itself for binding to duTRAF3, perturbing duTRAF3 self-association, which impaired the assembly of duTRAF3-duMAVS/duTRIF complex, ultimately resulted in a reduced production of IFN-β. These findings suggest that duTRAF3 is an important regulator of duck innate immune signaling and reveal a novel mechanism for the negative regulation of IFN-β production via changing the formation of the homo-oligomerization of wild molecules, implying a novel regulatory role of truncated proteins.


Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2.

  • C Reinhard‎ et al.
  • The EMBO journal‎
  • 1997‎

Tumor necrosis factor alpha (TNF alpha) a pro-inflammatory cytokine is an endogenous mediator of septic shock, inflammation, anti-viral responses and apoptotic cell death. TNF alpha elicits its complex biological responses through the individual or cooperative action of two TNF receptors of mol. wt 55 kDa (TNF-RI) and mol. wt 75 kDa (TNF-RII). To determine signaling events specific for TNF-RII we fused the extracellular domain of the mouse CD4 antigen to the intracellular domain of TNF-RII. Crosslinking of the chimeric receptor using anti-CD4 antibodies initiates exclusively TNF-RII-mediated signals. Our findings show that: (i) TNF-RII is able to activate two members of the MAP kinase family: extracellular regulated kinase (ERK) and c-jun N-terminal kinase (JNK); (ii) TRAF2, a molecule that binds TNF-RII and associates indirectly with TNF-RI, is sufficient to activate JNK upon overexpression; (iii) dominant-negative TRAF2 blocks TNF alpha-mediated JNK activation and (iv) TRAF2 signals the activation of JNK and NF-kappaB through different pathways. Our findings suggest that TNF alpha-mediated JNK activation in fibroblasts is independent of the cell death pathway and that TRAF2 occupies a key role in TNF receptor signaling to JNK.


Tumor Necrosis Factor Receptor-1 (p55) Deficiency Attenuates Tumor Growth and Intratumoral Angiogenesis and Stimulates CD8+ T Cell Function in Melanoma.

  • Yamila I Rodriguez‎ et al.
  • Cells‎
  • 2020‎

The role of tumor necrosis factor-α (TNF-α) in shaping the tumor microenvironment is ambiguous. Consistent with its uncertain role in melanoma, TNF-α plays a dual role, either acting as a cytotoxic cytokine or favoring a tumorigenic inflammatory microenvironment. TNF-α signals via two cognate receptors, namely TNFR1 (p55) and TNFR2 (p75), which mediate divergent biological activities. Here, we analyzed the impact of TNFR1 deficiency in tumor progression in the B16.F1 melanoma model. Tumors developed in mice lacking TNFR1 (TNFR1 knock-out; KO) were smaller and displayed lower proliferation compared to their wild type (WT) counterpart. Moreover, TNFR1 KO mice showed reduced tumor angiogenesis. Although no evidence of spontaneous metastases was observed, conditioned media obtained from TNFR1 KO tumors increased tumor cell migration. Whereas the analysis of tumor-associated immune cell infiltrates showed similar frequency of total and M2-polarized tumor-associated macrophages (TAMs), the percentage of CD8+ T cells was augmented in TNFR1 KO tumors. Indeed, functional ex vivo assays demonstrated that CD8+ T cells obtained from TNFR1KO mice displayed an increased cytotoxic function. Thus, lack of TNFR1 attenuates melanoma growth by modulating tumor cell proliferation, migration, angiogenesis and CD8+ T cell accumulation and activation, suggesting that interruption of TNF-TNFR1 signaling may contribute to control tumor burden.


Epigenome-Wide Association Study of Soluble Tumor Necrosis Factor Receptor 2 Levels in the Framingham Heart Study.

  • Michael M Mendelson‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Background: Transmembrane tumor necrosis factor (TNF) receptors are involved in inflammatory, apoptotic, and proliferative processes. In the bloodstream, soluble TNF receptor II (sTNFR2) can modify the inflammatory response of immune cells and is predictive of cardiovascular disease risk. We hypothesize that sTNFR2 is associated with epigenetic modifications of circulating leukocytes, which may relate to the pathophysiology underlying atherogenic risk. Methods: We conducted an epigenome-wide association study of sTNFR2 levels in the Framingham Heart Study Offspring cohort (examination 8; 2005-2008). sTNFR2 was quantitated by enzyme immunoassay and DNA methylation by microarray. The concentration of sTNFR2 was loge-transformed and outliers were excluded. We conducted linear mixed effects models to test the association between sTNFR2 level and methylation at over 400,000 CpGs, adjusting for age, sex, BMI, smoking, imputed cell count, technical covariates, and accounting for familial relatedness. Results: The study sample included 2468 participants (mean age: 67 ± 9 years, 52% women, mean sTNFR2 level 2661 ± 1078 pg/ml). After accounting for multiple testing, we identified 168 CpGs (P < 1.2 × 10-7) that were differentially methylated in relation to sTNFR2. A substantial proportion (27 CpGs; 16%) are in the major histocompatibility complex region and in loci overrepresented for antigen binding molecular functions (P = 1.7 × 10-4) and antigen processing and presentation biological processes (P = 1.3 × 10-8). Identified CpGs are enriched in active regulatory regions and associated with expression of 48 cis-genes (±500 kb) in whole blood (P < 1.1 × 10-5) that coincide with genes identified in GWAS of diseases of immune dysregulation (inflammatory bowel disease, type 1 diabetes, IgA nephropathy). Conclusion: Differentially methylated loci in leukocytes associated with sTNF2 levels reside in active regulatory regions, are overrepresented in antigen processes, and are linked to inflammatory diseases.


Intravenous hMSCs Ameliorate Acute Pancreatitis in Mice via Secretion of Tumor Necrosis Factor-α Stimulated Gene/Protein 6.

  • Zhigang He‎ et al.
  • Scientific reports‎
  • 2016‎

The administration of mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs) to enhance tissue repair is currently undergoing clinical trials. Some studies, including our previous work, have also revealed the beneficial effect of MSCs in severe acute pancreatitis (SAP); however, their mechanisms or mode of action remain controversial. In this study, we demonstrated that intravenously (i.v.)-administered human MSCs (hMSCs) remarkably promoted recovery from experimental SAP without significant engraftment of hMSCs in the damaged pancreas. Interestingly, we found that i.v.-administered hMSCs with knockdown of TSG-6 expression lost most of their anti-inflammatory effects and thus could not significantly ameliorate SAP. As expected, the effects of hMSCs were also duplicated by i.v. infusion of recombinant TSG-6. Furthermore, our results showed that the increase of oxidative stress, activation of the NLRP3 inflammasome and NF-κB signaling in SAP was substantially inhibited following administration of hMSCs or TSG-6, which was dependent on the presence of CD-44 receptors in acinar cells. In conclusion, our study, for the first time, revealed that novel mechanisms are responsible for the immunomodulatory effect of i.v. hMSCs.


Genetic determinants of circulating levels of tumor necrosis factor receptor II and their association with TNF-RII gene polymorphisms.

  • Yulia Vistoropsky‎ et al.
  • Cytokine‎
  • 2010‎

Tumor necrosis factor alpha (TNFalpha) is a cytokine involved in inflammatory, immune, and metabolic events. TNFalpha signals are mediated through activation of two receptors, one of which is tumor necrosis factor receptor TNF-RII.


Tumor necrosis factor-related apoptosis-inducing ligand induces the expression of proinflammatory cytokines in macrophages and re-educates tumor-associated macrophages to an antitumor phenotype.

  • Jing Gao‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapy, because it can induce apoptosis in various tumor cells but not in most normal cells. Although it is well known that TRAIL and its receptors are expressed in many types of normal cells, including immune cells, their immunological effects and regulatory mechanisms are still obscure. In the present study, we demonstrated that TRAIL affected the activity of NF-κB (nuclear factor-κB) and the expression of its downstream proinflammatory cytokines IL-1β (interleukin-1β), IL-6, and tumor necrosis factor α in macrophages. TRAIL also induced microRNA-146a (miR-146a) expression in an NF-κB-dependent manner. As a result, miR-146a was involved as a negative-feedback regulator in the down-regulation of proinflammatory cytokine expression. In addition, the suppression of histone deacetylase (HDAC) activities by trichostatin A improved miR-146a expression due to the up-regulation of the DNA-binding activity of NF-κB at the miR-146a promoter in TRAIL-induced macrophages, suggesting that histone acetylation was involved in the suppression of miR-146a expression. Further investigation revealed that the HDAC subtype HDAC1 directly regulated the expression of miR-146a in TRAIL-stimulated macrophages. Finally, the TRAIL-sensitive human non small cell lung carcinoma cell line NCI-H460 was used to elucidate the physiological significance of TRAIL with respect to tumor-associated macrophages (TAMs). We demonstrated that TRAIL re-educated TAMs to an M1-like phenotype and induced cytotoxic effects in the tumor cells. These data provide new evidence for TRAIL in the immune regulation of macrophages and may shed light on TRAIL-based antitumor therapy in human patients.


Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha.

  • Onur Boyman‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Psoriasis is a common T cell-mediated autoimmune disorder where primary onset of skin lesions is followed by chronic relapses. Progress in defining the mechanism for initiation of pathological events has been hampered by the lack of a relevant experimental model in which psoriasis develops spontaneously. We present a new animal model in which skin lesions spontaneously developed when symptomless prepsoriatic human skin was engrafted onto AGR129 mice, deficient in type I and type II interferon receptors and for the recombination activating gene 2. Upon engraftment, resident human T cells in prepsoriatic skin underwent local proliferation. T cell proliferation was crucial for development of a psoriatic phenotype because blocking of T cells led to inhibition of psoriasis development. Tumor necrosis factor-alpha was a key regulator of local T cell proliferation and subsequent disease development. Our observations highlight the importance of resident T cells in the context of lesional tumor necrosis factor-alpha production during development of a psoriatic lesion. These findings underline the importance of resident immune cells in psoriasis and will have implications for new therapeutic strategies for psoriasis and other T cell-mediated diseases.


Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation.

  • Anton Kichev‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI.


Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

  • Claudia-Gabriela Mitrofan‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling.


Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor.

  • Mikiya Ishihara‎ et al.
  • PloS one‎
  • 2014‎

Oncolytic virotherapy combined with immunomodulators is a novel noninvasive strategy for cancer treatment. In this study, we examined the tumoricidal effects of oncolytic HF10, a naturally occurring mutant of herpes simplex virus type-1, combined with an agonistic DTA-1 monoclonal antibody specific for the glucocorticoid-induced tumor necrosis factor receptor. Two murine tumor models were used to evaluate the therapeutic efficacies of HF10 virotherapy combined with DTA-1. The kinetics and immunological mechanisms of DTA-1 in HF10 infection were examined using flow cytometry and immunohistochemistry. Intratumoral administration of HF10 in combination with DTA-1 at a low dose resulted in a more vigorous attenuation of growth of the untreated contralateral as well as the treated tumors than treatment with either HF10 or DTA-1 alone. An accumulation of CD8(+) T cells, including tumor- and herpes simplex virus type-1-specific populations, and a decrease in the number of CD4(+) Foxp3(+) T regulatory cells were seen in both HF10- and DTA-1-treated tumors. Studies using Fc-digested DTA-1 and Fcγ receptor knockout mice demonstrated the direct participation of DTA-1 in regulatory T cell depletion by antibody-dependent cellular cytotoxicity primarily via macrophages. These results indicated the potential therapeutic efficacy of a glucocorticoid-induced tumor necrosis factor receptor-specific monoclonal antibody in oncolytic virotherapy at local tumor sites.


The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer's disease.

  • G L Wenk‎ et al.
  • Neuroscience‎
  • 2003‎

Inflammation and reduced forebrain norepinephrine are features of Alzheimer's disease that may interact to contribute to the degeneration of specific neural systems. We reproduced these conditions within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease. Tumor necrosis factor-alpha was infused into the basal forebrain of young mice pretreated with a norepinephrine neuronal toxin, N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP4), with the expectation that the loss of noradrenergic input would enhance the loss of cholinergic neurons. The results indicate that chronic infusion of tumor necrosis factor-alpha alone significantly decreased cortical choline acetyltransferase activity and increased the number of activated microglia and astrocytes within the basal forebrain. The loss of forebrain norepinephrine following systemic treatment with DSP4 did not alter the level of cortical choline acetyltransferase activity or activate microglia but significantly activated astrocytes within the basal forebrain. Infusion of tumor necrosis factor-alpha into DSP4-pretreated mice also reduced cortical choline acetyltransferase activity on the side of the infusion; however, the decline was not significantly greater than that produced by the infusion of tumor necrosis factor-alpha alone. The neurodegeneration seen may be indirect since a double-immunofluorescence investigation did not find evidence for the co-existence of tumor necrosis factor-alpha type I receptors on choline acetyltransferase-positive cells in the basal forebrain. The results suggest that noradrenergic cell loss in Alzheimer's disease does not augment the consequences of the chronic neuroinflammation and does not enhance neurodegeneration of forebrain cholinergic neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: