Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 259 papers

C1-inhibitor influence on platelet activation by thrombin receptors agonists.

  • Ivan D Tarandovskiy‎ et al.
  • Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis‎
  • 2022‎

Protease activated receptors 1 (PAR1) and 4 (PAR4) agonists are used to study platelet activation. Data on platelet activation are extrapolated across experimental settings. C1-inhibitor (C1INH) is a protease inhibitor present in plasma but not in isolated platelet suspensions. Here we show that C1INH affects platelet activation through PAR1 and PAR4 agonists.


Activation of endogenous thrombin receptors causes clustering and sensitization of epidermal growth factor receptors of swiss 3T3 cells without transactivation.

  • M F Crouch‎ et al.
  • The Journal of cell biology‎
  • 2001‎

The G protein-coupled thrombin receptor can induce cellular responses in some systems by transactivating the epidermal growth factor (EGF) receptor. This is in part due to the stimulation of ectoproteases that generate EGF receptor ligands. We show here that this cannot account for the stimulation of proliferation or migration by thrombin of Swiss 3T3 cells. Thrombin has no direct effect on the activation state of the EGF receptor or of its downstream effectors. However, thrombin induces the subcellular clustering of the EGF receptor at filamentous actin-containing structures at the leading edge and actin arcs of migrating cells in association with other signaling molecules, including Shc and phospholipase Cgamma1. In these thrombin-primed cells, the subsequent migratory response to EGF is potentiated. Thrombin did not potentiate the EGF-stimulated EGF receptor phosphorylation. Thus, in Swiss 3T3 cells the G protein-coupled thrombin receptor can potentiate the EGF tyrosine kinase receptor response when activated by EGF, and this appears to be due to the subcellular concentration of the receptor with downstream effectors and not to the overall ability of EGF to induce receptor transphosphorylation. Thus, the EGF receptor subcellular localization which is altered by thrombin appears to be an important determinant of the efficacy of downstream EGF receptor signaling in cell migration.


Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation.

  • Jean-Paul Motta‎ et al.
  • Journal of Crohn's & colitis‎
  • 2021‎

Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease.


Thrombin Induces Secretion of Multiple Cytokines and Expression of Protease-Activated Receptors in Mouse Mast Cell Line.

  • Xiaobin Fang‎ et al.
  • Mediators of inflammation‎
  • 2019‎

Thrombin could elicit degranulation of mast cells involved in numerous physiologic and pathologic processes; however, the detailed scrutiny of this procedure and further research of possible cell signaling pathways are lacking.


Determinants of the specificity of protease-activated receptors 1 and 2 signaling by factor Xa and thrombin.

  • Soumendra Rana‎ et al.
  • Journal of cellular biochemistry‎
  • 2012‎

Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.


Comparative molecular docking analysis of the SARS CoV-2 Spike glycoprotein with the human ACE-2 receptors and thrombin.

  • Piyush Bhanu‎ et al.
  • Bioinformation‎
  • 2020‎

Comparative molecular docking and vixualization analysis of the human thrombin with the SARS CoV-2 Spike glycoprotein and the human ACE-2 receptors is of interest. The data shows that residues spanning positions 30-41 in the ACE-2 have interaction with the spike glycoprotein (UniProt ID: Q9BYF1). Results also shows that thrombin binds with SER494 in the spike protein, and GLU37 in the ACE2 receptor. SER494 in the viral receptor-binding domain provides support for hotspot-353 reported elsewhere. These preliminary data provide insights for further probe.


Thrombin induces platelet activation in the absence of functional protease activated receptors 1 and 4 and glycoprotein Ib-IX-V.

  • Paolo Lova‎ et al.
  • Cellular signalling‎
  • 2010‎

Three different surface receptors mediate thrombin-induced activation and aggregation of human blood platelets: the protease activated receptors 1 and 4 (PAR1 and PAR4), and the glycoprotein (GP) Ibalpha of the GPIb-IX-V complex. However, their relative contribution in the stimulation of specific intracellular signaling pathways by thrombin remains largely controversial. In this work, we have shown that activation of PAR1 and PAR4 by thrombin or by selective activating peptides stimulated phospholipase C, tyrosine kinases, as well as the small GTPase Rap1b, promoted actin polymerization and cytoskeleton reorganization. When platelets were desensitized for both PAR1 and PAR4, high doses of thrombin, were unable to activate Rap1b, but produced a still evident stimulation of phospholipase C, as documented by the measurement of intracellular Ca(2+) mobilization and protein kinase C activation. These events were abrogated upon proteolysis of GPIbalpha by the metalloproteinase mocarhagin. In PAR1- and PAR4-desensitized platelets, thrombin also induced tyrosine phosphorylation of some substrates, but, surprisingly, this event was largely independent of GPIbalpha binding, as it persisted upon platelet treatment with mocarhagin. Similarly, thrombin-induced actin polymerization and cytoskeleton reorganization were only minimally altered upon PAR1 and PAR4 inactivation and GPIbalpha proteolysis. Interestingly, none of these events were elicited by enzymatically inactive thrombin. Finally we found that GPIbalpha cleavage reduced, but did not abrogate, platelet aggregation in PAR1- and PAR4-desensitized platelets. These results identify a novel pathway for platelet activation operated by thrombin independently of PAR1, PAR4 and GPIbalpha.


Thrombin induces pro-inflammatory and anti-inflammatory cytokines secretion from human mast cell line (HMC-1) via protease-activated receptors.

  • Xiaobin Fang‎ et al.
  • Molecular immunology‎
  • 2022‎

Thrombin-induced mast cell activation represents cross-talk between coagulation and inflammation. However, there is still controversy concerning the pro- or anti-inflammatory effects mast cells have in response to thrombin signaling. Human mast cell HMC-1 was incubated with 0.2 U/mL thrombin. Cells and supernatants were collected. Production of pro- and anti-inflammatory mediators was determined by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). Expression of proteinase-activated receptor-1 (PAR1) and -4 (PAR4) mRNA in HMC-1 cells was analyzed by qPCR. Activation of mitogen-activated protein kinases (MAPKs) was measured by immunoblotting. Furthermore, the impact of PAR1 inhibitor (SCH79797) and agonist (TFLLR-NH2), PAR4 inhibitor (BMS986120) and agonist (AYPGKF-NH2), and MAPK inhibitors (SB203580, PD98059, and SP600125) on the production of mediators was evaluated using qPCR and ELISA. Thrombin exposure increased pro- and anti-inflammatory mediators, expression of PAR1 and PAR4 mRNA, and phosphorylation of JNK, p38, and ERK1/2 MAPKs in HMC-1 cells. SCH79797, BMS986120, and MAPK inhibitors (SB203580, PD98059, and SP600125) were inhibited, while TFLLR-NH2 and AYPGKF-NH2 promoted pro- and anti-inflammatory cytokines in this process. HMC-1 produces pro- and anti-inflammatory cytokines after thrombin incubation, namely PAR1 and PAR4. Alongside HMC-1, MAPK signaling pathways are involved in the production of these mediators. The mast cells showed dual activation after thrombin stimulation.


GpIbα interacts exclusively with exosite II of thrombin.

  • Bernhard C Lechtenberg‎ et al.
  • Journal of molecular biology‎
  • 2014‎

Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition.


Thrombin regulates the function of human blood dendritic cells.

  • Manabu Yanagita‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions.


Mechanisms of thrombin-Induced myometrial contractions: Potential targets of progesterone.

  • Fumitomo Nishimura‎ et al.
  • PloS one‎
  • 2020‎

Intrauterine bleeding during pregnancy is a major risk factor for preterm birth. Thrombin, the most abundant coagulation factor in blood, is associated with uterine myometrial contraction. Here, we investigated the molecular mechanism and signaling of thrombin-induced myometrial contraction. First, histologic studies of placental abruption, as a representative intrauterine bleeding, revealed that thrombin was expressed within the infiltrating hemorrhage and that thrombin receptor (protease-activated receptor 1, PAR1) was highly expressed in myometrial cells surrounding the hemorrhage. Treatment of human myometrial cells with thrombin resulted in augmented contraction via PAR1. Thrombin-induced signaling to myosin was then mediated by activation of myosin light chain kinase- and Rho-induced phosphorylation of myosin light chain-2. In addition, thrombin increased prostaglandin-endoperoxidase synthase-2 (PTGS2 or COX2) mRNA and prostaglandin E2 and F2α synthesis in human myometrial cells. Thrombin significantly increased the mRNA level of interleukine-1β, whereas it decreased the expressions of prostaglandin EP3 and F2α receptors. Progesterone partially blocked thrombin-induced myometrial contractions, which was accompanied by suppression of the thrombin-induced increase of PTGS2 and IL1B mRNA expressions as well as suppression of PAR1 expression. Collectively, thrombin induces myometrial contractions by two mechanisms, including direct activation of myosin and indirect increases in prostaglandin synthesis. The results suggest a therapeutic potential of progesterone for preterm labor complicated by intrauterine bleeding.


Thrombin-Induced Calpain Activation Promotes Protease-Activated Receptor 1 Internalization.

  • Alejandro Alvarez-Arce‎ et al.
  • International journal of cell biology‎
  • 2017‎

The serine protease thrombin activates Protease-Activated Receptors (PARs), a family of G-protein-coupled receptors (GPCRs) activated by the proteolytic cleavage of their extracellular N-terminal domain. Four members of this family have been identified: PAR1-4. The activation of Protease-Activated Receptor 1(PAR1), the prototype of this receptor family, leads to an increase in intracellular Ca+2 concentration ([Ca+2]i) mediated by Gq11α coupling and phospholipase C (PLC) activation. We have previously shown that the stimulation of PAR1 by thrombin promotes intracellular signaling leading to RPE cell transformation, proliferation, and migration which characterize fibroproliferative eye diseases leading to blindness. Within this context, the elucidation of the mechanisms involved in PAR1 inactivation is of utmost importance. Due to the irreversible nature of PAR1 activation, its inactivation must be efficiently regulated in order to terminate signaling. Using ARPE-19 human RPE cell line, we characterized thrombin-induced [Ca+2]i increase and demonstrated the calcium-dependent activation of μ-calpain mediated by PAR1. Calpains are a family of calcium-activated cysteine proteases involved in multiple cellular processes including the internalization of membrane proteins through clathrin-coated vesicles. We demonstrated that PAR1-induced calpain activation results in the degradation of α-spectrin by calpain, essential for receptor endocytosis, and the consequent decrease in PAR1 membrane expression. Collectively, the present results identify a novel μ-calpain-dependent mechanism for PAR1 inactivation following exposure to thrombin.


Allosteric inhibition of α-thrombin enzymatic activity with ultrasmall gold nanoparticles.

  • André L Lira‎ et al.
  • Nanoscale advances‎
  • 2019‎

The catalytic activity of enzymes can be regulated by interactions with synthetic nanoparticles (NPs) in a number of ways. To date, however, the potential use of NPs as allosteric effectors has not been investigated in detail. Importantly, targeting allosteric (distal) sites on the enzyme surface could afford unique ways to modulate the activity, allowing for either enzyme activation, partial or full inhibition. Using p-mercaptobenzoic acid-coated ultrasmall gold NPs (AuMBA) and human α-thrombin as a model system, here we experimentally tested the hypothesis that enzyme activity could be regulated through ultrasmall NP interactions at allosteric sites. We show that AuMBA interacted selectively and reversibly around two positively charged regions of the thrombin surface (exosites 1 and 2) and away from the active site. NP complexation at the exosites transmitted long-range structural changes over to the active site, altering both substrate binding affinity and catalysis. Significantly, thrombin activity was partially reduced - but not completely inhibited - by interactions with AuMBA. These findings indicate that interactions of proteins with ultrasmall NPs may mimic a typical biomolecular complexation event, and suggest the prospect of using ultrasmall particles as synthetic receptors to allosterically regulate protein function.


Mechanisms of modulation of brain microvascular endothelial cells function by thrombin.

  • Eugen Brailoiu‎ et al.
  • Brain research‎
  • 2017‎

Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca2+ concentration in RBMVEC via Ca2+ release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca2+ influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.


Thrombin Cleavage of Plasmodium falciparum Erythrocyte Membrane Protein 1 Inhibits Cytoadherence.

  • Mark R Gillrie‎ et al.
  • mBio‎
  • 2016‎

Plasmodium falciparum malaria remains one of the most deadly infections worldwide. The pathogenesis of the infection results from the sequestration of infected erythrocytes (IRBC) in vital organs, including the brain, with resulting impairment of blood flow, hypoxia, and lactic acidosis. Sequestration occurs through the adhesion of IRBC to host receptors on microvascular endothelium by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large family of variant surface antigens, each with up to seven extracellular domains that can bind to multiple host receptors. Consequently, antiadhesive therapies directed at single endothelial adhesion molecules may not be effective. In this study, we demonstrated that the serine protease thrombin, which is pivotal in the activation of the coagulation cascade, cleaved the major parasite adhesin on the surface of IRBC. As a result, adhesion under flow was dramatically reduced, and already adherent IRBC were detached. Thrombin cleavage sites were mapped to the Duffy binding-like δ1 (DBLδ1) domain and interdomains 1 and 2 in the PfEMP1 of the parasite line IT4var19. Furthermore, we observed an inverse correlation between the presence of thrombin and IRBC in cerebral malaria autopsies of children. We investigated a modified (R67A) thrombin and thrombin inhibitor, hirugen, both of which inhibit the binding of substrates to exosite I, thereby reducing its proinflammatory properties. Both approaches reduced the barrier dysfunction induced by thrombin without affecting its proteolytic activity on PfEMP1, raising the possibility that thrombin cleavage of variant PfEMP1 may be exploited as a broadly inhibitory antiadhesive therapy.


Thrombin induces morphological and inflammatory astrocytic responses via activation of PAR1 receptor.

  • Xiaojun Chen‎ et al.
  • Cell death discovery‎
  • 2022‎

Spinal cord injury (SCI) will result in the significant elevation of thrombin production at lesion site via either breakage of blood-spinal cord barrier or upregulated expression within nerve cells. Thrombin-induced activation of the protease activated receptors (PARs) evokes various pathological effects that deteriorate the functional outcomes of the injured cord. The cellular consequences of thrombin action on the astrocytes, as well as the underlying mechanism are not fully elucidated by far. In the present study, SCI model of rats was established by contusion, and primary astrocytes were isolated for culture from newborn rats. The expression levels of thrombin and PAR1 receptor at lesion sites of the spinal cord were determined. The primary astrocytes cultured in vitro were stimulated with different concentration of thrombin, and the resultant morphological changes, inflammatory astrocytic responses, as well as PAR1-activated signal pathway of astrocytes were accordingly examined using various agonists or antagonists of the receptor. Thrombin was found to reverse astrocytic stellation, promote proliferation but inhibit migration of astrocytes. Furthermore, the serine protease was shown to facilitate inflammatory response of astrocytes through regulation of MAPKs/NFκB pathway. Our results have provided the morphological evidence of astrocytic reactivity in response to thrombin stimulation and its neuroinflammatory effects following SCI, which will be indicative for the fundamental insights of thrombin-induced neuropathology.


A novel thrombin-based triagonist with diabetes-protective and weight-lowering potential.

  • Jingyu Zhang‎ et al.
  • Life sciences‎
  • 2020‎

To investigate the diabetes-protective effect and weight-lowering potential of a novel long-acting triagonist at three metabolically related hormone receptors including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucagon receptors.


Role of the thrombin receptor in development and evidence for a second receptor.

  • A J Connolly‎ et al.
  • Nature‎
  • 1996‎

Thrombin, a coagulation protease generated at sites of vascular injury, activates platelets, endothelial cells, leukocytes and mesenchymal cells. A G-protein-coupled receptor that is proteolytically activated by thrombin is a target for drug development aimed at blocking thrombosis, inflammation and proliferation. Here we show that although disruption of the thrombin receptor (tr) gene in mice causes about half of the tr-/- embryos to die at embryonic day 9-10, half survive to become grossly normal adult mice with no bleeding diathesis. Strikingly, tr-/- platelets respond strongly to thrombin, whereas tr-/- fibroblasts lose their ability to respond to thrombin. We conclude that the thrombin receptor plays an unexpected role in embryonic development, suggesting a possible new function for the 'coagulation' proteases themselves. Moreover, a second platelet thrombin receptor exists, and different thrombin receptors have tissue-specific roles. This may allow development of therapeutics that will selectively block thrombin's different cellular actions.


Rac inhibits thrombin-induced Rho activation: evidence of a Pak-dependent GTPase crosstalk.

  • Hans Rosenfeldt‎ et al.
  • Journal of molecular signaling‎
  • 2006‎

The strict spatio-temporal control of Rho GTPases is critical for many cellular functions, including cell motility, contractility, and growth. In this regard, the prototypical Rho family GTPases, Rho, Rac, and Cdc42 regulate the activity of each other by a still poorly understood mechanism. Indeed, we found that constitutively active forms of Rac inhibit stress fiber formation and Rho stimulation by thrombin. Surprisingly, a mutant of Rac that is unable to activate Pak1 failed to inhibit thrombin signaling to Rho. To explore the underlying mechanism, we investigated whether Pak1 could regulate guanine nucleotide exchange factors (GEFs) for Rho. We found that Pak1 associates with P115-RhoGEF but not with PDZ-RhoGEF or LARG, and knock down experiments revealed that P115-RhoGEF plays a major role in signaling from thrombin receptors to Rho in HEK293T cells. Pak1 binds the DH-PH domain of P115-RhoGEF, thus suggesting a mechanism by which Rac stimulation of Pak1 may disrupt receptor-dependent Rho signaling. In agreement, expression of a dominant-negative Pak-Inhibitory Domain potentiated the activation of Rho by thrombin, and prevented the inhibition of Rho by Rac. These findings indicate that Rac interferes with receptor-dependent Rho stimulation through Pak1, thus providing a mechanism for cross-talk between these two small-GTPases.


Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype.

  • Michael J V White‎ et al.
  • PloS one‎
  • 2015‎

For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: