Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 119 papers

Targeting tachykinin receptors in neuroblastoma.

  • Anton G Henssen‎ et al.
  • Oncotarget‎
  • 2017‎

Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.


Tachykinin receptors antagonism for asthma: a systematic review.

  • Renata Ramalho‎ et al.
  • BMC pulmonary medicine‎
  • 2011‎

Tachykinins substance P, neurokinin A and neurokinin B seem to account for asthma pathophysiology by mediating neurogenic inflammation and several aspects of lung mechanics. These neuropeptides act mainly by their receptors NK1, NK2 and NK3, respectively which may be targets for new asthma therapy.


Tachykinin receptors in the guinea-pig isolated oesophagus: a complex system.

  • K P Kerr‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. The tachykinin receptors mediating contraction of isolated longitudinal strips of the guinea-pig oesophageal body were characterized with substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) as well as the analogues, [Sar9,Met(O2)11]SP, [Nle10]NKA(4-10) and [MePhe7]NKB, selective for NK1, NK2 and NK3, receptors, respectively. Experiments were performed both in the absence and presence of a cocktail of peptidase inhibitors, captopril (1 microM), thiorphan (1 microM) and amastatin (20 microM), in order to determine whether membrane bound proteases are important in the metabolism of tachykinins in this preparation. 2. All agonists produced concentration-dependent contractile effects. The presence of the peptidase inhibitors shifted the concentration-response curves of SP, [Nle10]NKA(4-10) and [MePhe7]NKB significantly leftwards and the concentration-response curve of NKB was shifted significantly rightwards. However, the EC50 values were significantly different only for [Nle10]NKA(4-10) and NKB. 3. In the presence of the peptidase inhibitors, the EC50 values of the selective agonists, [MePhe7]NKB (0.6 nM) and [Nle10]NKA(4-10) (66 nM) indicated the presence of both tachykinin NK3 and NK2 receptors. [MePhe7]NKB produced less than 50% of the maximal response obtained with the other agonists. Since [Sar9,Met(O2)11]SP produced a small response in the nanomolar concentration range in about 30% of the preparations tested, it is possible that some NK1 receptors were also present. 4. Assuming competitive antagonism, the NK2-selective antagonist SR 48,968 (30 nM) gave apparent pKH values of 8.13 and 8.65 for [Nle10]NKA(4-10) in the absence and presence of peptidase inhibitors, respectively, supporting the presence of NK2 receptors. 5. The NK3-selective antagonist SR 142,801 (0.1 microM), suppressed responses to low (0.1-10 nM) concentrations of [MePhe7]NKB. These contractile responses to [MePhe7]NKB were also abolished by atropine (0.6 microM) suggesting that this response was mediated via cholinergic nerves. 6. It is concluded that the guinea-pig oesophagus is a complex system which has both NK2 and NK3 receptors and possibly some NK1 receptors as-well.


Deciphering specificity and cross-reactivity in tachykinin NK1 and NK2 receptors.

  • Jesper J Madsen‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The tachykinin receptors neurokinin 1 (NK1R) and neurokinin 2 (NK2R) are G protein-coupled receptors that bind preferentially to the natural peptide ligands substance P and neurokinin A, respectively, and have been targets for drug development. Despite sharing a common C-terminal sequence of Phe-X-Gly-Leu-Met-NH2 that helps direct biological function, the peptide ligands exhibit some degree of cross-reactivity toward each other's non-natural receptor. Here, we investigate the detailed structure-activity relationships of the ligand-bound receptor complexes that underlie both potent activation by the natural ligand and cross-reactivity. We find that the specificity and cross-reactivity of the peptide ligands can be explained by the interactions between the amino acids preceding the FxGLM consensus motif of the bound peptide ligand and two regions of the receptor: the β-hairpin of the extracellular loop 2 (ECL2) and a N-terminal segment leading into transmembrane helix 1. Positively charged sidechains of the ECL2 (R177 of NK1R and K180 of NK2R) are seen to play a vital role in the interaction. The N-terminal positions 1 to 3 of the peptide ligand are entirely dispensable. Mutated and chimeric receptor and ligand constructs neatly swap around ligand specificity as expected, validating the structure-activity hypotheses presented. These findings will help in developing improved agonists or antagonists for NK1R and NK2R.


Characterization of tachykinin receptors in the uterus of the oestrogen-primed rat.

  • J Magraner‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1 The aim of our study was to characterize the tachykinin receptor population in the oestrogen-primed rat uterus. For this purpose, we investigated the receptor type(s) responsible for tachykinin-induced contraction of longitudinally-arranged smooth muscle layer. The effects of substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and several of their analogues with well-defined selectivities for tachykinin NK1, NK2 and NK3 receptors were studied and their inhibition by the selective nonpeptide tachykinin receptor antagonists (S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3-yl]ethyl)-4-phenyl- -azoniabicyclo[2.2.2]octane chloride (SR 140333, NK1-selective), (S)-N-methyl-N[4-(4acetylamino-4-phenylpiperidino)-2-(3,4-dichloro phenyl)butyl]benzamide (SR 48968, NK2-selective) and (R)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)prop yl)-4-phenylpiperidin-4-yl)-N- methyla-cetamide (SR 142801, NK3-selective) was evaluated. Additionally, expression of tachykinin receptor mRNA was examined by using the reverse transcription-polymerase chain reaction (RT-PCR). 2 SP, NKA, [Nle10]-NKA(4-10), the analogue with selectivity at the tachykinin NK2 receptor type, and NKB elicited concentration-dependent contractions of the rat uterus. The pD2 values were 5.95+/-0.19; 6.73+/-0.21; 7.53+/-0.12 and 5.76+/-0.21, respectively. The selective agonist for the tachykinin NK1 receptor [Sar9Met(O2)11]-SP produced a small phasic response in the nanomolar concentration range. The selective tachykinin NK3 receptor agonist [MePhe7]-NKB failed to induce any significant contraction. 3 In the presence of the neutral endopeptidase inhibitor phosphoramidon (1 microM), the log concentration-response curves to exogenous tachykinins and their analogues were shifted significantly leftwards. The pD2 values were 6.12+/-0.10, 8.04+/-0.07, 7.89+/-0.03 and 6.59+/-0.07 for SP, NKA, [Nle10]-NKA(4-10) and NKB, respectively. In the presence of phosphoramidon (1 microM), [Sar9Met(O2)11]-SP (1 nM - 0.3 microM) induced concentration-dependent contractions of increasing amplitude when only one concentration of drug was applied to each uterine strip and the pD2 value was 7.61+/-0.89. [MePhe7]-NKB induced small, inconsistent contractions and, therefore, a pD2 value could not be calculated. 4 In experiments performed in the presence of phosphoramidon (1 microM), SR 48968 (3 nM - 0.1 microM) caused parallel and rightward shifts in the log concentration-response curves of NKA. The calculated pKB value was 9.16+/-0.08 and the slope of the Schild regression was 1.28+/-0.24. SR 48968 (0.1 microM) also antagonized responses to SP with an apparent pKB value of 7.63+/-0.13. SR 48968 (0.1 microM) inhibited contractions elicited by NKB (1 nM - 3 microM) and [Nle10]-NKA(4-10) (0.1 nM - 3 microM) but had no effect on the response evoked by [Sar9Met(O2)11]-SP (0.1 microM). 5 SR 140333 (0.1 microM) inhibited responses to SP with an apparent pKB value of 7.19+/-0.22. This compound did not significantly affect responses to NKA, [Nle10]-NKA(4-10) and NKB, but suppressed [Sar9Met(O2)11]-SP (0.1 microM)-induced contraction. SR 142801 (0.1 microM) had no effect on responses to natural tachykinins or their analogues. 6 Total RNA was extracted from some of the uteri used in functional studies. RT-PCR assays revealed single bands corresponding to the expected product sizes encoding cDNA for tachykinin NK1 (587 base pairs) and NK2 receptors (491 base pairs) (n=6 different animals). A very low abundance transcript corresponding to the 325 base pairs product expected for the tachykinin NK3 receptor was detected. 7 The present data show that functionally active tachykinin NK1 and NK2 receptors are expressed in the oestrogen-primed rat uterus. The NK2 receptor type seems to be the most important one involved in the contractile responses elicited by tachykinins. NK3 receptors are present in trace amounts and seem not to be involved in tachykinin-induced contractions.


Evidence for tachykinin NK3 receptors-triggered peptide YY release from isolated guinea-pig distal colon.

  • Shu-ichi Kojima‎ et al.
  • European journal of pharmacology‎
  • 2014‎

The anorectic gut hormone, peptide YY (PYY), is released from colonic mucosal endocrine cells, but little is known about the role for tachykinin NK3 receptor in the control of PYY release from the colonic mucosa. We investigated the functional role for NK3 receptors in the control of PYY release from isolated guinea-pig distal colon, and the role for NK3 receptors-triggered PYY release in the control of colonic motility. Isolated colonic preparations were mounted in organ baths for measurement of PYY release and mechanical activity. The release of PYY from these preparations was determined by enzyme immunoassays. The NK3 receptor agonist senktide produced a tetrodotoxin/atropine-sensitive sustained increase in the release of PYY from the colonic preparations. Basal PYY release was transiently inhibited by the NK3 receptor antagonist SB222200. The neuropeptide Y1 receptor antagonist BIBO3304 produced a leftward shift of the concentration-response curves for senktide-evoked neurogenic contraction, but neither the neuropeptide Y2 receptor antagonist BIIE0246 nor the neuropeptide Y5 receptor antagonist CGP71683 affected the senktide concentration-response curves. NK3 receptors appear to play an important role in the control of PYY release from colonic mucosa, and NK3 receptor-triggered PYY release can exert Y1 receptor-mediated inhibition of tachykinergic neuromuscular transmission. This indicates a pathophysiological role for the NK3 receptor-triggered PYY release in the control of colonic motility.


Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

  • Nadia Jaafari‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility.


The role of tachykinin NK1 and NK2 receptors in atropine-resistant colonic propulsion in anaesthetized guinea-pigs.

  • A Lecci‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. The role of endogenous tachykinins on guinea-pig colonic propulsion was investigated by using potent and selective tachykinin NK1 and NK2 receptor antagonists. Colonic propulsion and contractions were determined by means of a balloon-catheter device, inserted into the rectum of guanethidine (68 micromol kg(-1), s.c., 18 and 2 h before)-pretreated, urethane-anaesthetized guinea-pigs. Propulsion of the device (dynamic model) was determined by measuring the length of the catheter expelled during 60 min filling of the balloon (flow rate 5 microl min(-1)). 2. In control conditions the tachykinin NK1 receptor antagonist SR 140333 (1 micromol kg(-1), i.v.) did not affect either colonic propulsion or the amplitude of contractions. The tachykinin NK2 receptor antagonists MEN 10627 and MEN 11420 (1 micromol kg(-1), i.v.) increased colonic propulsion at 10 min (+120% and 150%, respectively) but at 60 min the effect was significant only for MEN 10627 (+84%). SR 48968 (1 micromol kg(-1), i.v.) did not significantly enhance the colonic propulsion. None of these tachykinin NK2 receptor antagonists modified the amplitude of colonic contractions. In contrast, both atropine (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)) and hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished propulsion (81% and 87% inhibition, respectively) and decreased the amplitude of contractions (68% inhibition for either treatment). 3. In atropine-treated animals (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)), apamin (30 nmol kg(-1), i.v.) restored colonic propulsion (+416%) and increased the amplitude of contractions (+367% as compared to atropine alone). Hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished the apamin-induced, atropine-resistant colonic propulsion (97% inhibition) and reduced the amplitude of the atropine-resistant contractions (52% inhibition). 4. The apamin-induced, atropine-resistant colonic propulsion was inhibited by SR 140333 (-69% at 1 micromol kg(-1)), SR 48968 (-78% at 1 micromol kg(-1)), MEN 11420 (-59% at 1 micromol kg(-1)) and MEN 10627 (-50% at 1 micromol kg(-1)), although the latter effect was not statistically significant. The combined administration of SR 140,333 and MEN 10,627 (1 micromol kg(-1) for each antagonist) almost completely abolished colonic propulsion (90% inhibition). The amplitude of colonic contractions was also reduced by SR 140333 (-42%), SR 48968 (-29%), MEN 11420 (-45%) but not by MEN 10627 (-16%). The combined administration of SR 140333 and MEN 10,627 reduced the amplitude of contractions by 47%. SR 140603 (1 micromol kg(-1), i.v.), the less potent enantiomer of SR 140333, was inactive. 5. In control animals, apamin (30 nmol kg(-1), i.v.) enhanced colonic propulsion (+84%) and increased the amplitude of contractions (+68%), as compared to the vehicle. Hexamethonium (55 micromol kg(-1), i.v. plus infusion of 17 micromol h(-1)) inhibited propulsion (86% inhibition) and decreased the amplitude of contractions (49% inhibition). SR 140333, SR 48968, MEN 11420, MEN 10627, or the coadministration of SR 140333 and MEN 10627 had no effect. 6. In a separate series of experiments, the mean amplitude of colonic contractions was also recorded under isovolumetric conditions through the balloon-catheter device kept in place at 75 mm from the anal sphincter (static model). In control conditions, neither SR 140333 nor MEN 11420 modified the amplitude of contractions. In atropine-pretreated guinea-pigs, SR 140333 and MEN 11420 (0.1-1 micromol kg(-1)) dose-dependently decreased the amplitude of contractions. In apamin- and atropine-pretreated animals, only the highest (1 micromol kg(-1)) dose of SR 140333 or MEN 11420 significantly decreased the amplitude of contractions. The inhibitory potency of atropine (0.3-1 micromol kg(-1)) was similar in apamin-pretreated animals and in controls. 7. It was concluded that, in anaesthetized guinea-pigs, endogenous tachykinins, acting through both NK(1) and NK(2) receptors, act as non-cholinergic excitatory neurotransmitters in promoting an apamin-evoked reflex propulsive activity of the distal colon.


Independent endocytosis of the NK(1) and NK(3) tachykinin receptors in neurons of the rat myenteric plexus.

  • K M Jenkinson‎ et al.
  • Neuroscience‎
  • 2000‎

In the myenteric plexus of rat ileum, NK(1) and NK(3) receptors are co-located almost exclusively on neurons of a single population. This study compares endocytosis of NK(1) and NK(3) receptors in these neurons. In the absence of agonist, 26.2+/-2.8% of NK(1) receptor and 29.1+/-1.1% of NK(3) receptor was located in the cytoplasm of the neurons; the remaining receptor was on the surface. The tachykinin neurotransmitters, substance P (10 pM-10 microM) and neurokinin A (10 pM-100 microM), both induced concentration-dependent endocytosis of NK(1) and NK(3) receptors. The selective NK(1) receptor agonist, [Sar(9),Met(O(2))(11)]-substance P (1 microM), induced endocytosis of NK(1) receptor (64.2+/-1.5% in cytoplasm) but not NK(3) receptor (32.9+/-5.0%). The NK(1) receptor endocytosis was reduced by the selective NK(1) receptor antagonist, CP-99994 (100 nM), but not by the selective NK(3) receptor antagonist, SR-142801 (1 microM). The selective NK(3) receptor agonist, senktide (10 nM), induced endocytosis of NK(3) receptor (61.2+/-5.4%) but not NK(1) receptor (34.0+/-4.5%). The NK(3) receptor endocytosis was blocked by SR-142801 but not by CP-99994. We also investigated the effects of monensin, which generally blocks recycling of endocytosed receptor. In the absence or presence of exogenous agonist, monensin caused a build-up of NK(1) receptor, but not NK(3) receptor, in the cytoplasm of neurons.The results demonstrate independent, agonist-induced endocytosis of NK(1) and NK(3) receptors in neurons of the myenteric plexus of rat ileum and suggest that the mechanisms of recycling of NK(1) and NK(3) receptors differ.


Substance P neurotransmission and violent aggression: the role of tachykinin NK(1) receptors in the hypothalamic attack area.

  • Jozsef Halasz‎ et al.
  • European journal of pharmacology‎
  • 2009‎

Substance P and its tachykinin NK(1) receptors are highly expressed in brain regions involved in emotional control. We recently showed that NK(1)-mediated substance P neurotransmission is deeply involved in the control of aggressiveness. To get further insights into the NK(1) receptor/aggression relationship, we studied the role of NK(1) receptor-expressing neurons of the hypothalamic attack area, the only brain region in rats from which biting attacks can reliably be elicited by both electrical and neurochemical stimulation. We show here that the hypothalamic attack area preferentially expresses the NK(1) type of tachykinin receptors. When such neurons were lesioned by substance P-conjugated saporin (SP-sap) infused into the hypothalamic attack area, violent attacks were dramatically reduced, whereas milder forms of aggression (soft bites and offensive threats) remained unaltered. The lesions were neuron type-specific as SP-sap lesions markedly reduced NK(1) staining without significantly affecting total cell counts. NK(1) staining in the neighboring lateral hypothalamus was not affected, which confirms the spatial specificity of the lesion. Surprisingly, the lesions also reduced anxiety-like behavior in the elevated plus-maze. This effect is likely explained by the extensive connections of the hypothalamic attack area with brain regions involved in the control of anxiety. The present findings suggest that violent and milder forms of attack are differentially controlled. NK(1) receptor-expressing neurons of the hypothalamic attack area are tightly and specifically involved in the former but not in the latter. Our data also raise the possibility of a coordinated control of violent attacks and anxiety by the same NK(1)-expressing neurons.


Pharmacological analysis of the tachykinin receptors that mediate activation of nonadrenergic, noncholinergic relaxant nerves that innervate guinea pig trachealis.

  • B J Canning‎ et al.
  • The Journal of pharmacology and experimental therapeutics‎
  • 1998‎

Previous studies indicated that antidromic stimulation of capsaicin-sensitive vagal afferent fibers activated, via peripheral release of tachykinins, nonadrenergic, noncholinergic parasympathetic ganglion neurons that mediate relaxations of guinea pig trachealis. On the basis of the effects of selective agonists and inhibition with a nonselective receptor antagonist (SR 48968), we speculated that tachykinin-mediated activation of neurokinin3 (NK3) receptors might be involved. Using the recently developed NK3-selective receptor antagonist SR 142801, we further assessed the role of NK3 receptors in these relaxant responses. Relaxations of the guinea pig trachea elicited by antidromic stimulation of capsaicin-sensitive vagal afferent nerves were markedly inhibited by 0.3 microM SR 142801 and were abolished by a combination of SR 142801 and either of the NK1-selective receptor antagonists SR 140333 and CP 99994 (0.3 microM each). The NK3 receptor antagonist had similar effects on the relaxant responses elicited by capsaicin and substance P, but it had no effect on relaxations of the trachealis elicited by electrical field stimulation of the postganglionic nerves that innervate the trachealis or by stimulation of the preganglionic parasympathetic vagal nerves that innervate the trachea. These results and the observation that the ganglion neurons that mediate these responses are densely innervated by substance P-containing nerve fibers lead us conclude that stimulation of capsaicin-sensitive visceral afferent fibers activates, upon peripheral release of tachykinins, nonadrenergic, noncholinergic inhibitory neurons innervating guinea pig trachealis via activation of both NK3 and NK1 receptors.


Characterization of RO4583298 as a novel potent, dual antagonist with in vivo activity at tachykinin NK₁ and NK₃ receptors.

  • P Malherbe‎ et al.
  • British journal of pharmacology‎
  • 2011‎

Clinical results of osanetant and talnetant (selective-NK₃ antagonists) indicate that blocking the NK₃ receptor could be beneficial for the treatment of schizophrenia. The objective of this study was to characterize the in vitro and in vivo properties of a novel dual NK₁/NK₃ antagonist, RO4583298 (2-phenyl-N-(pyridin-3-yl)-N-methylisobutyramide derivative).


Modulation by 5-HT1A receptors of the 5-HT2 receptor-mediated tachykinin-induced contraction of the rat trachea in vitro.

  • P R Germonpré‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. In the Fisher 344 rat, tachykinins have been shown to cause the release of 5-hydroxytryptamine (5-HT) from airway mast cells, which then causes direct smooth muscle activation as well as the release of acetylcholine from cholinergic nerves. The aim of the present study was to examine the modulatory effects of 5-HT receptors on the neurokinin A (NKA)-induced release of endogenous 5-HT and airway smooth muscle contraction in the isolated Fisher 344 rat trachea. 2. The selective 5-HT2 receptor antagonist ketanserin (0.1 microM) produced an almost complete inhibition of the contractions caused by NKA (n=4, P<0.0001, two-way ANOVA), and a significant rightward shift of the concentration-response curve to 5-HT (n=8, P<0.001, two-way ANOVA). 3. The partial agonist for 5-HT1A receptors, 8-OH-DPAT (1 microM), and the full agonist for 5-HT1 receptors, 5-CT (0.3 microM), potentiated the submaximal contractions induced by the 5-HT2 receptor agonist alpha-methyl-5-HT (0.1 microM) (n=4; P<0.005 and P<0.05, respectively). 8-OH-DPAT (1 microM), as well as the 5-HT1A receptor antagonists pMPPI, SDZ 216525 and NAN-190 (0.1 microM each), caused significant inhibition of the tracheal contractions induced both by NKA (10 nM-3 microM) and 5-HT (10 nM-10 microM) (n=4-10). This suggests that activation of 5-HT1A receptors potentiates the 5-HT2 receptor-mediated contractions. 4. SDZ 216525 (0.1 microM) significantly reduced the maximal contraction produced by 1 microM NKA (n=10, P< 0.001), without affecting the release of endogenous 5-HT. These data rule out the involvement of a 5-HT1A receptor-mediated positive feedback mechanism of the 5-HT release from mast cells. 5. Even in the presence of atropine (1 microM), 8-OH-DPAT (1 microM) further reduced the maximal NKA-induced contraction (n=4, P<0.0001), while the contractions of the rat isolated trachea induced by electrical field stimulation and the concentration-response curve to carbachol were unaffected by pMPPI (0.1 microM), SDZ 216525 (0.1 microM), NAN-190 (0.1 microM) and 8-OH-DPAT (1 microM) (n=4-6). These data demonstrate that the 5-HT1A receptor-mediated potentiation of contractile responses is not due to nonspecific inhibition of airway smooth muscle contraction or to modulation of postganglionic nerve activation. 6. The selective 5-HT1B/1D receptor antagonist GR 127935, the selective 5-HT3 receptor antagonist tropisetron and the selective 5-HT4 receptor antagonists SB 204070 and GR 113808 (0.1 microM each) had no effect on the concentration-response curve for NKA (n=6-10), ruling out the involvement of 5-HT1B/1D, 5-HT3 and 5-HT4 receptors. 7. The alpha-adrenoreceptor antagonist phentolamine (1 microM) had no effect on the 5-HT-induced contractions (n=4), ruling out the involvement of alpha-adrenoreceptors. 8. In conclusion, the tachykinin-induced contraction of the F334 rat isolated trachea is mediated by the stimulation of 5-HT2 receptors. Activation of 5-HT1A receptors located on airway smooth muscle potentiates the direct contractile effects of 5-HT2 receptor activation. The 5-HT1B/1D, 5-HT3 and 5-HT4 receptors are not involved in the NKA-induced contraction of rat airways.


Distribution and pharmacological characterization of primate NK-1 and NK-3 tachykinin receptors in the central nervous system of the rhesus monkey.

  • Masatoshi Nagano‎ et al.
  • British journal of pharmacology‎
  • 2006‎

Much attention has focused on tachykinin receptors as therapeutic targets for neuropsychiatric disorders, although their expressional distributions in the primate central nervous system (CNS) remain unclear. We cloned the genes encoding the NK-1 and NK-3 tachykinin receptors (referred to as rmNK-1 and rmNK-3) from the rhesus monkey (Macaca mulatta) brain and examined their pharmacological profiles and regional distributions in the CNS. The deduced rmNK-1 amino-acid sequence differed by only two amino acids from the human NK-1 (hNK-1). The deduced rmNK-3 amino-acid sequence was two amino acids shorter than human NK-3 (hNK-3), with a seven-amino-acid difference in sequence. Ligand binding studies revealed that the affinity of rmNK-1 to substance P (SP) was comparable to that of hNK-1 in cell lines that expressed individual receptors stably. Nonpeptide antagonists had similar effects on the binding of rmNK-1 and hNK-1. Affinity of rmNK-3 for NKB was stronger than for SP and the IC50 value was comparable with that of hNK-3. Ca2+ imaging showed that activations of both rmNK-1 and rmNK-3 by specific ligands, SP and senktide, induced increased intracellular Ca2+ in cell lines that stably expressed individual primate tachykinin receptors. The amounts of rmNK-1 and rmNK-3 mRNAs were quantitatively determined in the monkey CNS. The expression of rmNK-1 was observed in all of the cortical and subcortical regions, including the hippocampus and the amygdala. The putamen contained the most NK-1 mRNA in the brain, with less rmNK-3 mRNA found in the cortex compared to rmNK-1 mRNA. In the monkey hippocampus and amygdala, rmNK-1 mRNA was present at markedly higher concentrations than rmNK-3 mRNA. The present results provide an insight into the distinct physiological nature and significance of the NK-1 and NK-3 tachykinin systems in the primate CNS. These findings are indispensable for establishing model systems in the search for a subtype-specific tachykinin receptor agonist and antagonist for the treatment of neuropsychiatric disorders.


Electrophysiological characterisation of tachykinin receptors in the rat nucleus of the solitary tract and dorsal motor nucleus of the vagus in vitro.

  • K A Maubach‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. Recent studies have shown antagonists at the NK1 subtype of receptor for tachykinins are antiemetics and suggested that this may result from blockade of tachykinin-mediated synaptic transmission at a central site in the emetic reflex. 2. We have used intracellular recording in vitro to study the pharmacology of tachykinins in the nucleus of the solitary tract (NST) and dorsal motor nucleus of the vagus (DMNV). 3. Neurones in the NST were depolarized by substance P (SP), the presumed endogenous ligand for the NK1 receptor and these effects were mimicked by the NK1 agonists, SP-O-methylester (SPOMe), GR73632 and septide; however, SP was nearly an order of magnitude less potent than the latter two agonists. 4. In the DMNV, SP and NK1 receptor agonists evoked similar depolarising responses but SP appeared to be more potent than in the NST and was closer in potency to the other agonists. 5. NK1-receptor antagonists blocked responses to septide and GR73632 in the NST but had little effect on responses to SP and SPOMe. In contrast, in the DMNV the NK1-receptor antagonists blocked responses to septide and GR73632 but also reduced responses to SP and SPOMe. 6. Neurokinin A (NKA) was almost equipotent with septide and GR73632 in depolarizing both NST and DMNV neurones but these effects were not mimicked by a specific NK2-receptor agonist. Responses to NKA were unaffected by an NK2-receptor antagonist; however, the depolarizing effects of NKA were blocked by NK1-receptor antagonists. 7. Neurones in both DMNV and NST were unaffected by the endogenous NK3-receptor ligand, neurokinin B and by a specific agonist for this site, senktide. 8. The results with NK1 receptor agonists and antagonists suggest that the septide-sensitive NK1 site is involved in the excitation of both NST and DMNV neurones. The 'classical' NK1 receptor may play more of a role in the DMNV and a third unknown site may be responsible for the depolarizing response to SP in the NST. The effects of NKA are best interpreted as an action at the septide-sensitive NK1 site. This raises the possibility that anti-emetic action of the NK1 antagonists may be due to blockade of NKA transmission at the septide-sensitive site.


Characterization of putative tachykinin peptides in Caenorhabditis elegans.

  • Naoko Sakai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.


Neurogenic tachykinin mechanisms in experimental nephritis of rats.

  • Kristina Rodionova‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2020‎

We demonstrated earlier that renal afferent pathways combine very likely "classical" neural signal transduction to the central nervous system and a substance P (SP)-dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.


Medullary tachykinin precursor 1 neurons promote rhythmic breathing.

  • Jean-Philippe Rousseau‎ et al.
  • eLife‎
  • 2023‎

Rhythmic breathing is generated by neural circuits located in the brainstem. At its core is the preBötzinger Complex (preBötC), a region of the medulla, necessary for the generation of rhythmic breathing in mammals. The preBötC is comprised of various neuronal populations expressing neurokinin-1 receptors, the cognate G-protein-coupled receptor of the neuropeptide substance P (encoded by the tachykinin precursor 1 or Tac1). Neurokinin-1 receptors are highly expressed in the preBötC and destruction or deletion of neurokinin-1 receptor-expressing preBötC neurons severely impair rhythmic breathing. Although, the application of substance P to the preBötC stimulates breathing in rodents, substance P is also involved in nociception and locomotion in various brain regions, suggesting that Tac1 neurons found in the preBötC may have diverse functional roles. Here, we characterized the role of Tac1-expressing preBötC neurons in the generation of rhythmic breathing in vivo, as well as motor behaviors. Using a cre-lox recombination approach, we injected adeno-associated virus containing the excitatory channelrhodopsin-2 ChETA in the preBötC region of Tac1-cre mice. Employing a combination of histological, optogenetics, respiratory, and behavioral assays, we showed that stimulation of glutamatergic or Tac1 preBötC neurons promoted rhythmic breathing in both anesthetized and freely moving animals, but also triggered locomotion and overcame respiratory depression by opioid drugs. Overall, our study identified a population of excitatory preBötC with major roles in rhythmic breathing and behaviors.


Expression of the tachykinin receptor mRNAs in healthy human colon.

  • Nadia Jaafari‎ et al.
  • European journal of pharmacology‎
  • 2008‎

Tachykinins are a family of neuropeptides, involved in a variety of physiological and pathological processes occurring in the gastrointestinal tract. They act via three distinct types of receptors, tachykinin NK(1), NK(2), and NK(3) receptors, which belong to the family of G protein-coupled receptors. The aim of the present study was to characterize, for the first time in the healthy human colon, the TACR(1), TACR(2) and TACR(3) mRNAs encoding the three different tachykinin receptors and to measure their relative expression by quantitative reverse transcription-PCR assay. Our results confirm the broad distribution of the tachykinin receptors but evidenced significant differences in the expression level of their respective mRNAs. A higher expression level of the TACR2 mRNA alpha isoform, the gene encoding the functional tachykinin NK(2) receptor, was observed in comparison to TACR1 and TACR3 mRNAs genes encoding for NK(1) and NK(3) receptors respectively. The prevalence of the TACR2 mRNA alpha isoform strongly suggests a major involvement of tachykinin NK(2) receptor in the regulation of human colonic functions.


Central anti-hypertensive effect of tachykinin NK3 receptor antagonists in rat.

  • Andrée Lessard‎ et al.
  • European journal of pharmacology‎
  • 2004‎

Tachykinins are involved in the central autonomic control of blood pressure. In the present study, we examined the i.c.v. cardiovascular effects of several tachykinin receptor antagonists in awake spontaneously hypertensive rats (SHR, 15 weeks old). Results showed that two tachykinin NK(3) receptor antagonists (R-820: 3-indolylcarbonyl-Hyp-Phg-N(Me)-Bzl and SB 222200: (S)-(-)-N-(alpha-ethylbenzyl)-3-methyl-2-phenylquinoline-4-carboxamide) caused a sustained and dose-dependent reduction of blood pressure when injected i.c.v. but not i.v. The stereoselective anti-hypertensive effect of SB 222200 peaked at 3 h and faded at 6 h post-injection (if injected at 07:00 h) or had a slower onset and peaked at 8 h post-injection (if injected at 13:00 h). The effect of R-820 was maximal at 24 h and lasted up to 48 h post-injection. Both antagonists failed to alter blood pressure in normotensive Wistar-Kyoto rats (WKY) and heart rate was not affected in both strains. The anti-hypertensive effect of SB 222200 was not associated with changes in plasma levels of catecholamines and vasopressin and it remained unchanged in SHR subjected to acute bilateral nephrectomy. In contrast, blood pressure was not affected by tachykinin NK(1) (RP 67580: (+/-) 7,7-diphenyl-2[1-imino-2(2-methoxy-phenyl)-ethyl]perhydroisoindol-4-one(3aR,7aR)) and NK(2) (SR 48968: (S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide) receptor antagonists. Data suggest that brain tachykinin NK(3) receptors are implicated in the maintenance of hypertension in SHR. Hence, these receptors may represent promising therapeutic target in the treatment of arterial hypertension.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: