Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,865 papers

Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors.

  • Yi-Xiang Qi‎ et al.
  • eLife‎
  • 2016‎

Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution.


Serotonin receptors in epilepsy: Novel treatment targets?

  • Jo Sourbron‎ et al.
  • Epilepsia open‎
  • 2022‎

Despite the availability of over 30 antiseizure medications (ASMs), there is no "one size fits it all," so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5-hydroxytryptamine, 5-HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5-HT. There are 14 different 5-HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5-HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each "5-HT subtype" separately and its relation to "epilepsy or seizures." Most research underlines the antiseizure activity of 5-HT1A,1D,2A,2C,3 agonism and 5-HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5-HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.


Modulation of anxiety by cortical serotonin 1A receptors.

  • Lukasz Piszczek‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety.


Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors.

  • Dayna R Loyd‎ et al.
  • Pain‎
  • 2011‎

Peripheral serotonin (5HT) has been implicated in migraine and temporomandibular pain disorders in humans and animal models and yet the mechanism(s) by which 5HT evokes pain remains unclear. Trigeminal pain can be triggered by activation of the transient receptor potential V1 channel (TRPV1), expressed by a subset of nociceptive trigeminal ganglia (TG) neurons and gated by capsaicin, noxious heat, and other noxious stimuli. As 5HT is released in the periphery during inflammation and evokes thermal hyperalgesia, and TRPV1 is essential for thermal hyperalgesia, we hypothesized that 5HT increases the activity of capsaicin-sensitive trigeminal neurons and that this increase can be attenuated by pharmacologically targeting peripheral 5HT receptors. TG cultures were pretreated with 5HT (10 nM-100 μM), sumatriptan (5HT(1B/1D) agonist), ketanserin (5HT(2A) antagonist), granisetron (5HT(3) antagonist), or vehicle prior to capsaicin (30-50 nM). Single-cell accumulation of intracellular calcium was recorded or calcitonin gene-related peptide (CGRP) release was measured following each treatment. In addition, using in situ hybridization and immunohistochemistry, we detected the colocalization of 5HT(1B), 5HT(1D), 5HT(2A), and 5HT(3A), but not 5HT(2C) mRNA with TRPV1 in TG cells. 5HT pretreatment evoked a significant increase in calcium accumulation in capsaicin-sensitive trigeminal neurons and enhanced capsaicin-evoked CGRP release, but had no significant effect when given alone. Sumatriptan, ketanserin, and granisetron treatment attenuated calcium accumulation and 5HT enhancement of capsaicin-evoked CGRP release. Together these results indicate that 5HT increases the activity of capsaicin-sensitive peripheral nociceptors, which can be attenuated by pharmacologically targeting peripheral 5HT receptors, thereby providing a mechanistic basis for peripheral craniofacial pain therapy.


Serotonin augments gut pacemaker activity via 5-HT3 receptors.

  • Hong-Nian Liu‎ et al.
  • PloS one‎
  • 2011‎

Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca(2+) and electric activities in ICC were performed by employing fluorescent Ca(2+) imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca(2+) antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca(2+) oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT(3) receptor antagonist suppressed spontaneous Ca(2+) activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT(3) receptor agonist, restored it. GR113808, a selective antagonist for 5-HT(4), and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT(3) receptors, had little effect on ICC Ca(2+) activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT(3) receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT(3) receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome.


Serotonin type 3 receptors stimulate offensive aggression in Syrian hamsters.

  • Lesley A Ricci‎ et al.
  • Behavioural brain research‎
  • 2005‎

Hamsters repeatedly exposed to cocaine during adolescence display high levels of offensive aggression compared to saline-treated littermates. The escalated offensive phenotype observed in adolescent cocaine-treated animals is modulated by serotonin (5-HT) signaling and can be suppressed by inhibiting 5-HT type 3 receptors, suggesting that these receptors might play an important role in the aggression-stimulating effects of adolescent cocaine exposure. The current study examined this hypothesis and extended earlier studies investigating the relationship between 5HT(3) receptor neural signaling and the offensive response patterns of aggressive, adolescent cocaine-treated animals compared to non-aggressive, saline-treated littermates. Adolescent cocaine-treated hamsters and saline-treated littermates were tested for offensive aggression after the administration of either the 5-HT(3) antagonist 3-tropanylindole-3-carboxylate methiodide (tropisetron) or the 5-HT(3) agonist 1-(m-chlorophenyl)-biguanide hydrochloride (mCPBG). Tropisetron significantly reduced the high levels of offensive responding observed in adolescent cocaine-treated animals, whereas treatment with the 5-HT(3) receptor agonist mCPBG failed to affect the escalated offensive response. Conversely, tropisetron failed to affect very low, baseline levels of aggressive responding seen in adolescent saline-treated animals, while 5-HT(3) receptor activation via mCPBG triggered highly escalated levels of offensive aggression in these animals. Together, these data support a stimulatory role for 5-HT(3) neural signaling in offensive aggression.


Serotonin decreases generation of dopaminergic neurons from mesencephalic precursors via serotonin type 7 and type 4 receptors.

  • J Parga‎ et al.
  • Developmental neurobiology‎
  • 2007‎

Inductive signals mediating the differentiation of neural precursors into serotonergic (5-HT) or dopaminergic neurons have not been clarified. We have recently shown that in cell aggregates obtained from rat mesencephalic precursors, reduction of serotonin levels induces a marked increase in generation of dopaminergic neurons. In the present study we treated rat neurospheres with antagonists of the main subtypes of 5-HT receptors, 5-HT transport inhibitors, or 5-HT receptor agonists, and studied the effects on generation of dopaminergic neurons. Cultures treated with Methiothepin (5-HT(1,2,5,6,7) receptor antagonist), the 5-HT(4) receptor antagonist GR113808;67:00-.or the 5-HT(7) receptor antagonist SB 269970 showed a significant increase in generation of dopaminergic cells. Treatment with the 5-HT(1B/1D) antagonist GR 127935, the 5-HT(2) antagonist Ritanserin, the 5-HT transporter inhibitor Fluoxetine, the dopamine and norepinephrine transport inhibitor GBR 12935, or with both inhibitors together, or 5-HT(4) or 5-HT(7) receptor agonists induced significant decreases in generation of dopaminergic cells. Cultures treated with WAY100635 (5-HT(1A) receptor antagonist), the 5-HT(3) receptor antagonist Ondasetron, or the 5-HT(6) receptor antagonist SB 258585 did not show any significant changes. Therefore, 5-HT(4) and 5-HT(7) receptors are involved in the observed serotonin-induced decrease in generation of dopaminergic neurons from proliferating neurospheres of mesencephalic precursors. 5-HT(4) and 5-HT(7) receptors were found in astrocytes and serotonergic cells using double immunolabeling and laser confocal microscopy, and the glial receptors appeared to play a major role.


Implication of 5-HT(2B) receptors in the serotonin syndrome.

  • Silvina Laura Diaz‎ et al.
  • Neuropharmacology‎
  • 2011‎

The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT(2B) receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied. We analyzed here, a putative role of 5-HT(2B) receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT(2B)(-/-) mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT(2B) receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT(2B)(-/-) mice after the administration of 5-HT(1A), 5-HT(2A) or 5-HT(2C) receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT(2B) receptor agonist BW723C86 (3 mg/kg) or 5-HT(1B) receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT(2B)(-/-) mice by administration of 5-HT(1A) and 5-HT(2C) receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT(2A) receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT(2B)(-/-) mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes. This evidence suggests that the presence of 5-HT(2B) receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism/antagonism of 5-HT receptors should be considered in the search of therapeutic targets for treating this serious disorder.


Development of Fluorescent Probes that Target Serotonin 5-HT2B Receptors.

  • Jhonny Azuaje‎ et al.
  • Scientific reports‎
  • 2017‎

Some 5-HT2B fluorescent probes were obtained by tagging 1-(2,5-dimethoxy-4-iodophenyl)-propan-2-amine (DOI) with a subset of fluorescent amines. Some of the resulting fluorescent ligands showed excellent affinity and selectivity profiles at the 5-HT2B receptors (e.g. 12b), while retain the agonistic functional behaviour of the model ligand (DOI). The study highlighted the most salient features of the structure-activity relationship in this series and these were substantiated by a molecular modelling study based on a receptor-driven docking model constructed on the basis of the crystal structure of the human 5-HT2B receptor. One of the fluorescent ligands developed in this work, compound 12i, specifically labelled CHO-K1 cells expressing 5-HT2B receptors and not parental CHO-K1 cells in a concentration-dependent manner. 12i enables imaging and quantification of specific 5-HT2B receptor labelling in live cells by automated fluorescence microscopy as well as quantification by measurements of fluorescence intensity using a fluorescence plate reader.


Allosteric Inhibition of Serotonin 5-HT7 Receptors by Zinc Ions.

  • Grzegorz Satała‎ et al.
  • Molecular neurobiology‎
  • 2018‎

The allosteric regulation of G protein-coupled receptors (GPCRs) is a well-known phenomenon, but there are only a few examples of allosteric modulation within the metabotropic serotonergic receptor family. Recently, we described zinc non-competitive interactions toward agonist binding at serotonin 5-HT1A receptors, in which biphasic effects, involving potentiation at sub-micromolar concentrations (10 μM) and inhibition at sub-millimolar concentrations (500 μM) of Zn2+ in radioligand binding assays, were consistent with both the agonist and antagonist-like effects of zinc ions observed in in vivo studies. Here, we showed new data demonstrating zinc allosteric inhibition of both agonist and antagonist binding at human recombinant 5-HT7 receptors stably expressed in HEK293 cells as observed by radioligand binding studies as well as zinc neutral antagonism displayed by the concentration of 10 μM in the functional LANCE assay. The allosteric nature of the effect of Zn on 5-HT7 receptors was confirmed (1) in saturation studies in which zinc inhibited the binding of potent orthosteric 5-HT7 receptor radioligands, the agonist [3H]5-CT, and the two antagonists [3H]SB-269970 and [3H]mesulergine, showing ceiling effect and differences in the magnitude of negative cooperativity (α = 0.15, 0.06, and 0.25, respectively); (2) in competition experiments in which 500 μM of zinc inhibited all radioligand displacements by non-labeled orthosteric ligands (5-CT, SB-269970, and clozapine), and the most significant reduction in affinity was observed for the 5-CT agonist (4.9-16.7-fold) compared with both antagonists (1.4-3.9-fold); and (3) in kinetic experiments in which 500 μM zinc increased the dissociation rate constants for [3H]5-CT and [3H]mesulergine but not for [3H]SB-269970. Additionally, in the functional LANCE test using the constitutively active HEK293 cell line expressing the 5-HT7 receptor, 10 μM zinc had features of neutral antagonism and increased the EC50 value of the 5-CT agonist by a factor of 3.2. Overall, these results showed that zinc can act as a negative allosteric inhibitor of 5-HT7 receptors. Given that the inhibiting effects of low concentrations of zinc in the functional assay represent the most likely direction of zinc activity under physiological conditions, among numerous zinc-regulated proteins, the 5-HT7 receptor can be considered a serotonergic target for zinc modulation in the CNS.


The bovine mammary gland expresses multiple functional isoforms of serotonin receptors.

  • Laura L Hernandez‎ et al.
  • The Journal of endocrinology‎
  • 2009‎

Recent studies in dairy cows have demonstrated that serotonergic ligands affect milk yield and composition. Correspondingly, serotonin (5-HT) has been demonstrated to be an important local regulator of lactational homeostasis and involution in mouse and human mammary cells. We determined the mRNA expression of bovine 5-HT receptor (HTR) subtypes in bovine mammary tissue (BMT) and used pharmacological agents to evaluate functional activities of 5-HT receptors. The mRNAs for five receptor isoforms (HTR1B, 2A, 2B, 4, and 7) were identified by conventional real-time (RT)-PCR, RT quantitative PCR, and in situ hybridization in BMT. In addition to luminal mammary epithelial cell expression, HTR4 was expressed in myoepithelium, and HTR1B, 2A, and 2B were expressed in small mammary blood vessels. Serotonin suppressed milk protein mRNA expression (alpha-lactalbumin and beta-casein mRNA) in lactogen-treated primary bovine mammary epithelial cell (BMEC) cultures. To probe the functional activities of individual receptors, caspase-3 activity and expression of alpha-lactalbumin and beta-casein were measured. Both SB22489 (1B antagonist) and ritanserin (2A antagonist) increased caspase-3 activity. Expression of alpha-lactalbumin and beta-casein mRNA levels in BMEC were stimulated by low concentrations of SB224289, ritanserin, or pimozide. These results demonstrate that there are multiple 5-HT receptor isoforms in the bovine mammary gland, and point to profound differences between serotonergic systems of the bovine mammary gland and the human and mouse mammary glands. Whereas human and mouse mammary epithelial cells express predominately the protein for the 5-HT(7) receptor, cow mammary epithelium expresses multiple receptors that have overlapping, but not identical, functional activities.


Zebrafish studies identify serotonin receptors mediating antiepileptic activity in Dravet syndrome.

  • Aliesha L Griffin‎ et al.
  • Brain communications‎
  • 2019‎

Dravet syndrome is a life-threatening early-onset epilepsy not well controlled by antiepileptic drugs. Drugs that modulate serotonin (5-HT) signalling, including clemizole, locaserin, trazodone and fenfluramine, have recently emerged as potential treatment options for Dravet syndrome. To investigate the serotonin receptors that could moderate this antiepileptic activity, we designed and synthesized 28 novel analogues of clemizole, obtained receptor binding affinity profiles, and performed in vivo screening in a scn1lab mutant zebrafish (Danio rerio) model which recapitulates critical clinical features of Dravet syndrome. We discovered three clemizole analogues with 5-HT receptor binding that exert powerful antiepileptic activity. Based on structure-activity relationships and medicinal chemistry-based analysis, we then screened an additional set of known 5-HT receptor specific drug candidates. Integrating our in vitro and in vivo data implicates 5-HT2B receptors as a critical mediator in the mechanism of seizure suppression observed in Dravet syndrome patients treated with 5-HT modulating drugs.


Distribution of serotonin 5-HT2C receptors in the ventral tegmental area.

  • M J Bubar‎ et al.
  • Neuroscience‎
  • 2007‎

Serotonin 2C receptors (5-HT2CR) appear to exert tonic inhibitory influence over dopamine (DA) neurotransmission in the ventral tegmental area (VTA), the origin of the mesolimbic DA system, thought to be important in psychiatric disorders including addiction and schizophrenia. Current literature suggests that the inhibitory influence of 5-HT2CR on DA neurotransmission occurs via indirect activation of GABA inhibitory neurons, rather than via a direct action of 5-HT2CR on DA neurons. The present experiments were performed to establish the distribution of 5-HT2CR protein on DA and GABA neurons in the VTA of male rats via double-label immunofluorescence techniques. The 5-HT2CR protein was found to be co-localized with the GABA synthetic enzyme glutamic acid decarboxylase (GAD), confirming the presence of the 5-HT2CR on GABA neurons within the VTA. The 5-HT2CR immunoreactivity was also present in cells that contained immunoreactivity for tyrosine hydroxylase (TH), the DA synthetic enzyme, validating the localization of 5-HT2CR to DA neurons in the VTA. While the degree of 5-HT2CR+GAD co-localization was similar across the rostro-caudal levels of VTA subnuclei, 5-HT2CR+TH co-localization was highest in the middle relative to rostral and caudal levels of the VTA, particularly in the paranigral, parabrachial, and interfascicular subnuclei. The present results suggest that the inhibitory influence of the 5-HT2CR over DA neurotransmission in the VTA is a multifaceted and complex interplay of 5-HT2CR control of the output of both GABA and DA neurons within this region.


Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo.

  • Jonathan R Fisher‎ et al.
  • Molecular neurodegeneration‎
  • 2016‎

The aggregation of amyloid-β (Aβ) into insoluble plaques is a hallmark pathology of Alzheimer's disease (AD). Previous work has shown increasing serotonin levels with selective serotonin re-uptake inhibitor (SSRI) compounds reduces Aβ in the brain interstitial fluid (ISF) in a mouse model of AD and in the cerebrospinal fluid of humans. We investigated which serotonin receptor (5-HTR) subtypes and downstream effectors were responsible for this reduction.


Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata.

  • Sarah Threlfell‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2004‎

The substantia nigra pars reticulata (SNr) plays a key role in basal ganglia function. Projections from multiple basal ganglia nuclei converge at the SNr to regulate nigrothalamic output. The SNr is also characterized by abundant aminergic input, including dopaminergic dendrites and axons containing 5-hydroxytryptamine (5-HT) or histamine (HA). The functions of HA in the SNr include motor control via HA H3 receptors (H3Rs), although the mechanism remains far from elucidated. In Parkinson's disease, there is an increase in H3Rs and the density of HA-immunoreactive axons in the SN. We explored the role of H3Rs in the regulation of 5-HT release in SNr using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in rat midbrain slices. Immunohistochemistry identified a similar distribution for histaminergic and serotonergic processes in the SNr: immunoreactive varicosities were observed in the vicinity of dopaminergic dendrites. Electrically evoked 5-HT release was dependent on extracellular Ca2+ and prevented by NaV+-channel blockade. Extracellular 5-HT concentration was enhanced by inhibition of uptake transporters for 5-HT but not dopamine. Selective H3R agonists (R)-(-)-alpha-methyl-histamine or immepip inhibited evoked 5-HT release by up to 60%. This inhibition was prevented by the H3R antagonist thioperamide but not by the 5-HT1B receptor antagonist isamoltane. H3R inhibition of 5-HT release prevailed in the presence of GABA or glutamate receptor antagonists (ionotropic and metabotropic), suggesting minimal involvement of GABA or glutamate synapses. The potent regulation of 5-HT by H3Rs reported here not only elucidates HA function in the SNr but also raises the possibility of novel targets for basal ganglia therapies.


Serotonin receptors expressed by myelinating Schwann cells in rat sciatic nerve.

  • E J Yoder‎ et al.
  • Brain research‎
  • 1997‎

We have previously reported that Schwann cells cultured from rat sciatic nerves express 5-HT2A receptors. In this study we extend these in vitro observations to Schwann cells in situ. Since the serotonin (5-HT) levels in rat sciatic nerve are elevated following nerve injury, we examined Schwann cells in healthy and injured adult rat sciatic nerves. These nerves were double-labeled immunohistochemically with an anti-idiotypic antibody that recognizes 5-HT1B, 5-HT2A, and 5-HT2C receptors and an antibody against S100beta, a Schwann cell marker. 5-HT receptor labeling was observed in Schwann cells of healthy and regenerating nerves, but not of degenerating nerves, while S100beta labeling was observed in the Schwann cells of all nerves examined. The 5-HT receptor immunolabeling was cytoplasmic, as with the cultured Schwann cells. While staining was observed at the nodes of Ranvier, it was not restricted to these locations. These results suggest that myelinating rat Schwann cells normally express 5-HT receptors in vivo, and that receptor expression is reduced during times when 5-HT levels are elevated in the sciatic endoneurium.


Further characterization of forebrain serotonin receptors mediating tachycardia in conscious rats.

  • A Szabó‎ et al.
  • Brain research bulletin‎
  • 1998‎

It has been shown recently that activation of forebrain serotonin1A (5-HT1A) receptors, likely within the preoptic area, elicits a slight increase in blood pressure and a substantial tachycardia. The present studies were designed to characterize: (1) the requirement of the 5-HT1A receptor agonist R(+)-8-hydroxy-2-(di-n-propylamino) tetralin [R(+)8-OH-DPAT]-induced tachycardia on the integrity of serotonergic innervation of the preoptic area, (2) the ability of the 5-HT1A receptor partial agonist buspirone to elicit cardiovascular responses when microinjected into the preoptic area, (3) the role of 5-HT2 and 5-HT3 receptors in the preoptic area in cardiovascular regulation, and (4) the site specificity of the tachycardia produced by R(+)8-OH-DPAT. The data suggest that activation of 5-HT1A receptors, but not 5-HT2 or 5-HT3 receptors, within or very near the preoptic area increases blood pressure and heart rate in conscious rats. Furthermore, the full response is dependent on afferent serotonergic innervation, suggesting a presynaptic modulatory role for 5-HT in the preoptic area.


Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

  • Annina Huser‎ et al.
  • PloS one‎
  • 2017‎

The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.


Colocalization of progestin receptors with serotonin in raphe neurons of macaque.

  • C L Bethea‎
  • Neuroendocrinology‎
  • 1993‎

Progesterone stimulates prolactin secretion in estrogen-primed women and monkeys. We hypothesize that this effect is neurally mediated since pituitary lactotropes do not contain progestin receptors (PR). In rodents, progesterone enhances hypothalamic serotonin (5HT) content, and both progesterone and 5HT stimulate prolactin and LH secretion. However, it was not known whether progesterone acts directly on 5HT neurons or through other neurons. Using a double immunocytochemical procedure, we show that 5HT neurons in macaque contain PR and thus are a progestin target system. Midbrain tissue blocks were obtained from two female monkeys and immersion-fixed prior to freezing and sectioning. PR was detected with a monoclonal antibody against human PR (B39) bridged to horseradish peroxidase and developed in diaminobenzidine. PR immunoreactivity appeared as a brown reaction product which localized in the nuclei of individual neurons. 5HT was detected with an antiserum generated against a conjugate of 5HT and BSA bridged to alkaline phosphatase. 5HT immunoreactivity appeared as a blue reaction product in the cytoplasm and axons of the pontine raphe nucleus. Neurons containing both nuclear reaction product for PR and cytoplasmic reaction product for 5HT were observed in both the dorsal and ventral aspects of the midbrain raphe nucleus as well as the raphe magnus. In summary, progesterone can have a direct action on 5HT neuronal function and thereby influence those endocrine and affective systems under serotonergic control.


Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors.

  • Yunfei Wang‎ et al.
  • Scientific reports‎
  • 2013‎

Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05-0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: