Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,246 papers

Muscarinic receptors in amygdala control trace fear conditioning.

  • Amber N Baysinger‎ et al.
  • PloS one‎
  • 2012‎

Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.


Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors.

  • Marina Guizzetti‎ et al.
  • Glia‎
  • 2010‎

In utero alcohol exposure can lead to fetal alcohol spectrum disorders, characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. We have recently shown that stimulation of M(3) muscarinic receptors in astrocytes increases the synthesis and release of fibronectin, laminin, and plasminogen activator inhibitor-1, causing neurite outgrowth in hippocampal neurons. As M(3) muscarinic receptor signaling in astroglial cells is strongly inhibited by ethanol, we hypothesized that ethanol may also inhibit neuritogenesis in hippocampal neurons induced by carbachol-stimulated astrocytes. In the present study, we report that the effect of carbachol-stimulated astrocytes on hippocampal neuron neurite outgrowth was inhibited in a concentration-dependent manner (25-100 mM) by ethanol. This effect was because of the inhibition of the release of fibronectin, laminin, and plasminogen activator inhibitor-1. Similar effects on neuritogenesis and on the release of astrocyte extracellular proteins were observed after the incubation of astrocytes with carbachol in the presence of 1-butanol, another short-chain alcohol, which like ethanol is a competitive substrate for phospholipase D, but not by tert-butanol, its analog that is not a substrate for this enzyme. This study identifies a potential novel mechanism involved in the developmental effects of ethanol mediated by the interaction of ethanol with cell signaling in astrocytes, leading to an impairment in neuron-astrocyte communication.


Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates.

  • Julia E Pedersen‎ et al.
  • eNeuro‎
  • 2018‎

The family of muscarinic acetylcholine receptors (mAChRs) consists of five members in mammals, encoded by the CHRM1-5 genes. The mAChRs are G-protein-coupled receptors, which can be divided into the following two subfamilies: M2 and M4 receptors coupling to Gi/o; and M1, M3, and M5 receptors coupling to Gq/11. However, despite the fundamental roles played by these receptors, their evolution in vertebrates has not yet been fully described. We have combined sequence-based phylogenetic analyses with comparisons of exon-intron organization and conserved synteny in order to deduce the evolution of the mAChR receptors. Our analyses verify the existence of two ancestral genes prior to the two vertebrate tetraploidizations (1R and 2R). After these events, one gene had duplicated, resulting in CHRM2 and CHRM4; and the other had triplicated, forming the CHRM1, CHRM3, and CHRM5 subfamily. All five genes are still present in all vertebrate groups investigated except the CHRM1 gene, which has not been identified in some of the teleosts or in chicken or any other birds. Interestingly, the third tetraploidization (3R) that took place in the teleost predecessor resulted in duplicates of all five mAChR genes of which all 10 are present in zebrafish. One of the copies of the CHRM2 and CHRM3 genes and both CHRM4 copies have gained introns in teleosts. Not a single separate (nontetraploidization) duplicate has been identified in any vertebrate species. These results clarify the evolution of the vertebrate mAChR family and reveal a doubled repertoire in zebrafish, inviting studies of gene neofunctionalization and subfunctionalization.


Novel long-acting antagonists of muscarinic ACh receptors.

  • Alena Randáková‎ et al.
  • British journal of pharmacology‎
  • 2018‎

The aim of this study was to develop potent and long-acting antagonists of muscarinic ACh receptors. The 4-hexyloxy and 4-butyloxy derivatives of 1-[2-(4-oxidobenzoyloxy)ethyl]-1,2,3,6-tetrahydropyridin-1-ium were synthesized and tested for biological activity. Antagonists with long-residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long-acting effects allow for reduced daily doses and adverse effects.


3-iodothyronamine (T1AM), a novel antagonist of muscarinic receptors.

  • Annunziatina Laurino‎ et al.
  • European journal of pharmacology‎
  • 2016‎

3-iodothyronamine (T1AM) is a trace amine suspected to derive from thyroid hormone metabolism. T1AM was described as a ligand of G-protein coupled monoaminergic receptors, including trace amine associated receptors, suggesting the amine may exert a modulatory role on the monoaminergic transmission. Nothing is known on the possibility that T1AM could also modulate the cholinergic transmission interacting with muscarinic receptors. We evaluated whether T1AM (10nM-100μM) was able to i) displace [3H]-NMS (0.20nM) binding to membrane preparations from CHO cells stably transfected with human muscarinic receptor subtypes (M1-M5); ii) modify basal or acetylcholine induced pERK1/2 levels in CHO expressing the human muscarinic type 3 receptor subtype by Western blot iii) modify basal and carbachol-induced contraction of isolated rat urinary bladder. T1AM fitting within rat muscarinic type 3 receptor was simulated by Docking studies. T1AM recognized all muscarinic receptor subtypes (pKi values in the micromolar range). Interacting at type 3, T1AM reduced acetylcholine-increased pERK1/2 levels. T1AM reduced carbachol-induced contraction of the rat urinary bladder. The fenoxyl residue and the iodide ion were found essential for establishing contacts with the active site of the rat muscarinic type 3 receptor subtype. Our results indicate that T1AM binds at muscarinic receptors behaving as a weak, not selective, antagonist. This finding adds knowledge on the pharmacodynamics features of T1AM and it may prompt investigation on novel pharmacological effects of T1AM at conditions of hyper-activation of the muscarinic tone including the overactive urinary bladder.


Functional Characterization of Muscarinic Receptors in Human Schwann Cells.

  • Roberta Piovesana‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Functional characterization of muscarinic cholinergic receptors in myelinating glial cells has been well described both in central and peripheral nervous system. Rat Schwann cells (SCs) express different muscarinic receptor subtypes with the prevalence of the M2 subtype. The selective stimulation of this receptor subtype inhibits SC proliferation, improving their differentiation towards myelinating phenotype. In this work, we describe for the first time that human SCs are cholinoceptive as they express several muscarinic receptor subtypes and, as for rat SCs, M2 receptor is one of the most abundant. Human SCs, isolated from adult nerves, were cultured in vitro and stimulated with M2 muscarinic agonist arecaidine propargyl ester (APE). Similarly to that observed in rat, M2 receptor activation causes a decreased cell proliferation and promotes SC differentiation as suggested by increased Egr2 expression with an improved spindle-like shape cell morphology. Conversely, the non-selective stimulation of muscarinic receptors appears to promote cell proliferation with a reduction of SC average cell diameter. The data obtained demonstrate that human SCs are cholinoceptive and that human cultured SCs may represent an interesting tool to understand their physiology and increase the knowledge on how the cholinergic stimulation may contribute to address human SC development in normal and pathological conditions.


RC-4BC cells express nicotinic and muscarinic acetylcholine receptors.

  • Gulsamal Zhubanova‎ et al.
  • PloS one‎
  • 2022‎

Acetylcholine is one of the most important endogenous neurotransmitters in a range of organisms spanning different animal phyla. Within pituitary gland it acts as autocrine and paracrine signal. In a current study we assessed expression profile of the different subunits of nicotinic as well as muscarinic acetylcholine receptors in RC-4BC cells, which are derived from rat pituitary gland tumor. Our findings indicate that β2, δ, and M2 subunits are expressed by the cells with the lowest Ct values compared to other tested subunits. The detected Ct values were 26.6±0.16, 27.95±0.5, and 28.8±0.25 for β2, δ, and M2 subunits, respectively.


Expression of M3 muscarinic acetylcholine receptors in gastric cancer.

  • Alina Maria Mehedinţeanu‎ et al.
  • Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie‎
  • 2021‎

Gastric cancer represents a real public health problem as far as incidence, aggressiveness and unfavorable prognosis are concerned. The autonomous nervous system might be one of the major factors involved in the onset, progression, and metastasis, both sympathetically and parasympathetically. The increased activation of the M3 muscarinic acetylcholine receptors (mAChRs) triggers pro-oncogenic mechanisms, especially at a gastric level, through the activation of the Hippo signaling pathway and the increase of the nerve growth factor.


Subtype differences in pre-coupling of muscarinic acetylcholine receptors.

  • Jan Jakubík‎ et al.
  • PloS one‎
  • 2011‎

Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex "collides" with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to G(q/11), while even-numbered receptors prefer coupling to G(i/o). We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [(3)H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M(1) and M(3) receptors also pre-couple with non-preferential G(i/o) G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein.


Priming of GABAergic Long-term Potentiation by Muscarinic Receptors.

  • Koyam Morales-Weil‎ et al.
  • Neuroscience‎
  • 2020‎

Growing evidence indicates that GABAergic interneurons play a pivotal role to generate brain oscillation patterns, which are fundamental for the mnemonic processing of the hippocampus. While acetylcholine (ACh) is a powerful modulator of synaptic plasticity and brain function, few studies have been focused on the role of cholinergic signaling in the regulation of GABAergic inhibitory synaptic plasticity. We have previously shown that co-activation of endocannabinoids (CB1R) and muscarinic receptor (mAChR) in hippocampal interneurons can induce activity-dependent GABAergic long-term depression in CA1 pyramidal neurons. Here, using electrophysiological and pharmacological approaches in acute rat hippocampal slices, we show that activation of cholinergic receptors followed by either high-frequency stimulation of Schaeffer collaterals or exogenous activation of metabotropic glutamate receptor (mGluR) induces a robust long-term potentiation at GABAergic synapses (iLTP). These forms of iLTP are blocked by the M1 type of mAChR (MR1) or by the group I of mGluR (mGluR1/5) antagonists. These results suggest the existence of spatiotemporal cooperativity between cholinergic and glutamatergic pathways where activation of mAChR serves as a metaplastic switch making glutamatergic synapses capable to induce long-term potentiation at inhibitory synapses, that may contribute to the modulation of brain mechanisms of learning and memory.


Exogenous activation of muscarinic receptors decreases subsequent non-muscarinic bladder contractions in vivo in the female rat.

  • F Aura Kullmann‎ et al.
  • Life sciences‎
  • 2013‎

To determine if the muscarinic agonist, bethanechol, inhibits the non-cholinergic, atropine-resistant (i.e. putatively purinergic) component of naturally occurring (i.e. reflexogenic) bladder contractions in vivo in the rat, as previously described in vitro. Our second aim was to determine if elevation of endogenous acetylcholine (ACh) with distigmine, an acetylcholine esterase (AChE) inhibitor, could also inhibit non-cholinergic component of reflexogenic bladder contractions.


Developmental expression of muscarinic receptors in the eyes of zebrafish.

  • Richard J Nuckels‎ et al.
  • Brain research‎
  • 2011‎

In previous work, we have shown that light-adaptive pigment granule dispersion can be induced in vitro by treating retinal pigment epithelium (RPE) isolated from bluegill retina with acetylcholine or its analog carbachol and that these agents act through muscarinic receptors to induce pigment granule dispersion. RPE is a monolayer of tissue found between the neural retina and the choroid. In fish, RPE has long apical projections enmeshed with the distal part of photoreceptors, reaching down to the level of their nuclei. The RPE disperses melanin pigment granules into the apical projections to shield light-sensitive photoreceptor outer segments from photobleaching when fish are under bright-light conditions. During development, RPE begin to respond to light at 5days post-fertilization, raising the question of whether responsiveness is correlated to receptor expression. Here, we isolate, clone and sequence chrm-odd receptor genes in zebrafish, characterize them phylogenetically and observe their expression in the eyes of the zebrafish at different developmental stages using RT-PCR and immunofluorescence microscopy. We find that zebrafish express six unique chrm-odd receptor subtypes: chrm1a, chrm1b, chrm3a, chrm3b, chrm5a and chrm5b - and these receptors are differentially expressed during development. Our phylogenetic analysis confirms the assignments of chrm1b and chrm5b, isolated here, as well as other muscarinic receptor genes and their duplicates and suggests previously described muscarinic receptors may need to be reclassified. Differences between the expression patterns of ostensibly duplicated genes raise the possibility that subtle differences between the duplicates may enable refined regulation of specific developmental events.


Functional characterization of rat submaxillary gland muscarinic receptors using microphysiometry.

  • T D Meloy‎ et al.
  • British journal of pharmacology‎
  • 2001‎

1. Muscarinic cholinoceptors (MChR) in freshly dispersed rat salivary gland (RSG) cells were characterized using microphysiometry to measure changes in acidification rates. Several non-selective and selective muscarinic antagonists were used to elucidate the nature of the subtypes mediating the response to carbachol. 2. The effects of carbachol (pEC(50) = 5.74 +/- 0.02 s.e.mean; n = 53) were highly reproducible and most antagonists acted in a surmountable, reversible fashion. The following antagonist rank order, with apparent affinity constants in parentheses, was noted: 4-DAMP (8.9)= atropine (8.9) > tolterodine (8.5) > oxybutynin (7.9) > S-secoverine (7.2) > pirenzepine (6.9) > himbacine (6.8) > AQ-RA 741 (6.6) > methoctramine (5.9). 3. These studies validate the use of primary isolated RSG cells in microphysiometry for pharmacological analysis. These data are consistent with, and extend, previous studies using alternative functional methods, which reported a lack of differential receptor pharmacology between bladder and salivary gland tissue. 4. The antagonist affinity profile significantly correlated with the profile at human recombinant muscarinic M(3) and M(5) receptors. Given a lack of antagonists that discriminate between M(3) and M(5), definitive conclusion of which subtype(s) is present within RSG cells cannot be determined.


Muscarinic M1 receptors modulate endotoxemia-induced loss of synaptic plasticity.

  • Aleksandar R Zivkovic‎ et al.
  • Acta neuropathologica communications‎
  • 2015‎

Septic encephalopathy is associated with rapid deterioration of cortical functions. Using magnetic resonance imaging (MRI) we detected functional abnormalities in the hippocampal formation of patients with septic delirium. Hippocampal dysfunction was further investigated in an animal model for sepsis using lipopolysaccharide (LPS) injections to induce endotoxemia in rats, followed by electrophysiological recordings in brain slices. Endotoxemia induced a deficit in long term potentiation which was completely reversed by apamin, a blocker of small conductance calcium-activated potassium (SK) channels, and partly restored by treatment with physostigmine (eserine), an acetylcholinesterase inhibitor, or TBPB, a selective M1 muscarinic acetylcholine receptor agonist. These results suggest a novel role for SK channels in the etiology of endotoxemia and explain why boosting cholinergic function restores deficits in synaptic plasticity. Drugs which enhance cholinergic or M1 activity in the brain may prove beneficial in treatment of septic delirium in the intensive care unit.


The allosteric site regulates the voltage sensitivity of muscarinic receptors.

  • Anika Hoppe‎ et al.
  • Cellular signalling‎
  • 2018‎

Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M1-Rs and M3-Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the Gq protein cycle. In the presence of ACh, M1-R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M3-R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M3/M1-R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M3-Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects.


Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

  • Bryon Silva‎ et al.
  • Neural plasticity‎
  • 2015‎

The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.


Novel M2 -selective, Gi -biased agonists of muscarinic acetylcholine receptors.

  • Alena Randáková‎ et al.
  • British journal of pharmacology‎
  • 2020‎

More than 30% of currently marketed medications act via GPCRs. Thus, GPCRs represent one of the most important pharmacotherapeutic targets. In contrast to traditional agonists activating multiple signalling pathways, agonists activating a single signalling pathway represent a new generation of drugs with increased specificity and fewer adverse effects.


Fusion with Promiscuous Gα16 Subunit Reveals Signaling Bias at Muscarinic Receptors.

  • Alena Randáková‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.


M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors.

  • Cai-Hong Xiong‎ et al.
  • Neuropharmacology‎
  • 2019‎

Cognitive flexibility is an important aspect of executive function. The cholinergic system, an important component of cognition, has been shown to modulate cognitive flexibility mainly through the striatum and prefrontal cortex. The role of M1 muscarinic receptors (M1 mAChRs), an important therapeutic target in the cholinergic system, in hippocampus-dependent cognitive flexibility is unclarified. In the present study, we demonstrated that selective activation of M1 mAChRs promoted extinction of initial learned response and facilitated acquisition of reversal learning in the Morris water maze, a behavior test that is mainly dependent on the hippocampus. However, these effects were abolished in GluA2 mutant mice with deficiency in phosphorylation of Ser880 by protein kinase C (PKC). Further long-term depression (LTD) in the hippocampal CA1 area induced by M1 mAChR activation was shown to be dependent on AMPA receptor subunit GluA2 but not GluA1. M1 mAChRs increased GluA2 endocytosis through phosphorylation of Ser880 by PKC. Inhibition of PKC blocked M1 mAChR-mediated LTD, memory switching and reversal learning facilitation. Moreover, the slow memory extinction observed in GluA2 mutant mice and PKC inhibitor-treated mice appeared to affect the consolidation and retrieval of reversal learning. Thus, these results demonstrate that M1 mAChRs mainly facilitate acquisition in spatial reversal learning and further elucidate that such an effect is dependent on the phosphorylation of GluA2 by PKC. The study helps clarify the role of M1 mAChRs in cognitive flexibility and may prompt the earlier prevention of cognitive inflexibility.


Differential regulation of muscarinic M1 receptors by orthosteric and allosteric ligands.

  • Christopher N Davis‎ et al.
  • BMC pharmacology‎
  • 2009‎

Activation of muscarinic M1 receptors is mediated via interaction of orthosteric agonists with the acetylcholine binding site or via interaction of allosteric agonists with different site(s) on the receptor. The focus of the present study was to determine if M1 receptors activated by allosteric agonists undergo the same regulatory fate as M1 receptors activated by orthosteric agonists.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: