Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

What Role Might Non-Mating Receptors Play in Schizophyllum commune?

  • Sophia Wirth‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2021‎

The B mating-type locus of the tetrapolar basidiomycete Schizophyllum commune encodes pheromones and pheromone receptors in multiple allelic specificities. This work adds substantial new evidence into the organization of the B mating-type loci of distantly related S. commune strains showing a high level of synteny in gene order and neighboring genes. Four pheromone receptor-like genes were found in the genome of S. commune with brl1, brl2 and brl3 located at the B mating-type locus, whereas brl4 is located separately. Expression analysis of brl genes in different developmental stages indicates a function in filamentous growth and mating. Based on the extensive sequence analysis and functional characterization of brl-overexpression mutants, a function of Brl1 in mating is proposed, while Brl3, Brl4 and Brl2 (to a lower extent) have a role in vegetative growth, possible determination of growth direction. The brl3 and brl4 overexpression mutants had a dikaryon-like, irregular and feathery phenotype, and they avoided the formation of same-clone colonies on solid medium, which points towards enhanced detection of self-signals. These data are supported by localization of Brl fusion proteins in tips, at septa and in not-yet-fused clamps of a dikaryon, confirming their importance for growth and development in S. commune.


Asymmetric diversification of mating pheromones in fission yeast.

  • Taisuke Seike‎ et al.
  • PLoS biology‎
  • 2019‎

In fungi, mating between partners depends on the molecular recognition of two peptidyl mating pheromones by their respective receptors. The fission yeast Schizosaccharomyces pombe (Sp) has two mating types, Plus (P) and Minus (M). The mating pheromones P-factor and M-factor, secreted by P and M cells, are recognized by the receptors mating type auxiliary minus 2 (Mam2) and mating type auxiliary plus 3 (Map3), respectively. Our recent study demonstrated that a few mutations in both M-factor and Map3 can trigger reproductive isolation in S. pombe. Here, we explored the mechanism underlying reproductive isolation through genetic changes of pheromones/receptors in nature. We investigated the diversity of genes encoding the pheromones and their receptor in 150 wild S. pombe strains. Whereas the amino acid sequences of M-factor and Map3 were completely conserved, those of P-factor and Mam2 were very diverse. In addition, the P-factor gene contained varying numbers of tandem repeats of P-factor (4-8 repeats). By exploring the recognition specificity of pheromones between S. pombe and its close relative Schizosaccharomyces octosporus (So), we found that So-M-factor did not have an effect on S. pombe P cells, but So-P-factor had a partial effect on S. pombe M cells. Thus, recognition of M-factor seems to be stringent, whereas that of P-factor is relatively relaxed. We speculate that asymmetric diversification of the two pheromones might be facilitated by the distinctly different specificities of the two receptors. Our findings suggest that M-factor communication plays an important role in defining the species, whereas P-factor communication is able to undergo a certain degree of flexible adaptation-perhaps as a first step toward prezygotic isolation in S. pombe.


Identification and characterization of the Komagataella phaffii mating pheromone genes.

  • Lina Heistinger‎ et al.
  • FEMS yeast research‎
  • 2018‎

The methylotrophic yeast Komagataella phaffii (Pichia pastoris) is a haploid yeast that is able to form diploid cells by mating once nitrogen becomes limiting. Activation of the mating response requires the secretion of a- and α-factor pheromones, which bind to G-protein coupled receptors on cells of opposite mating type. In K. phaffii, the genes coding for the α-factor (MFα), the pheromone surface receptors and the conserved a-factor biogenesis pathway have been annotated previously. Initial homology-based search failed to identify potential a-factor genes (MFA). By using transcriptome data of heterothallic strains under mating conditions, we found two K. phaffiia-factor genes. Deletion of both MFA genes prevented mating of a-type cells. MFA single mutants were still able to mate and activate the mating response pathway in α-type cells. A reporter assay was used to confirm the biological activity of synthetic a- and α-factor peptides. The identification of the a-factor genes enabled the first characterization of the role and regulation of the mating pheromone genes and the response of K. phaffii to synthetic pheromones and will help to gain a better understanding of the mating behavior of K. phaffii.


Genetic structure and evolutionary diversity of mating-type (MAT) loci in Hypsizygus marmoreus.

  • Gang Wang‎ et al.
  • IMA fungus‎
  • 2021‎

The mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.


Local Pheromone Release from Dynamic Polarity Sites Underlies Cell-Cell Pairing during Yeast Mating.

  • Laura Merlini‎ et al.
  • Current biology : CB‎
  • 2016‎

Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion, and sexual reproduction. How does a cell orient toward a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P and M cells, which respectively express P and M factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here we show that Cdc42-GTP polarization sites contain the M factor transporter Mam1, the general secretion machinery, which underlies P factor secretion, and Gpa1, suggesting that these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in the absence of the P factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in the absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on fluctuating local signal emission and perception, which become locked into place through stimulation.


IgG Suppresses Antibody Responses to Sheep Red Blood Cells in Double Knock-Out Mice Lacking Complement Factor C3 and Activating Fcγ-Receptors.

  • Jessica C Anania‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Antigen-specific IgG antibodies, passively administered together with erythrocytes, prevent antibody responses against the erythrocytes. The mechanism behind the suppressive ability of IgG has been the subject of intensive studies, yet there is no consensus as to how it works. An important question is whether the Fc-region of IgG is required. Several laboratories have shown that IgG suppresses equally well in wildtype mice and mice lacking the inhibitory FcγIIB, activating FcγRs (FcγRI, III, and IV), or complement factor C3. These observations consistently suggest that IgG-mediated suppression does not rely on Fc-mediated antibody functions. However, it was recently shown that anti-KEL sera failed to suppress antibody responses to KEL-expressing transgenic mouse erythrocytes in double knock-out mice lacking both activating FcγRs and C3. Yet, in the same study, antibody-mediated suppression worked well in each single knock-out strain. This unexpected observation suggested Fc-dependence of IgG-mediated suppression and prompted us to investigate the issue in the classical experimental model using sheep red blood cells (SRBC) as antigen. SRBC alone or IgG anti-SRBC together with SRBC was administered to wildtype and double knock-out mice lacking C3 and activating FcγRs. IgG efficiently suppressed the IgM and IgG anti-SRBC responses in both mouse strains, thus supporting previous observations that suppression in this model is Fc-independent.


ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.

  • Jason V Rogers‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.


Unique patterns of mating pheromone presence and absence could result in the ambiguous sexual behaviors of Colletotrichum species.

  • Andi M Wilson‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2021‎

Colletotrichum species are known to engage in unique sexual behaviors that differ significantly from the mating strategies of other filamentous ascomycete species. For example, most ascomycete fungi require the expression of both the MAT1-1-1 and MAT1-2-1 genes to induce sexual reproduction. In contrast, all isolates of Colletotrichum harbor only the MAT1-2-1 gene and yet, are capable of recognizing suitable mating partners and producing sexual progeny. The molecular mechanisms contributing to mating types and behaviors in Colletotrichum are, however, unknown. A comparative genomics approach analyzing 35 genomes, representing 31 Colletotrichum species and two Verticillium species, was used to elucidate a putative molecular mechanism underlying the unique sexual behaviors observed in Colletotrichum species. The existence of only the MAT1-2 idiomorph was confirmed across all species included in this study. Comparisons of the loci harboring the two mating pheromones and their cognate receptors revealed interesting patterns of gene presence and absence. The results showed that these genes have been lost multiple, independent times over the evolutionary history of this genus. These losses indicate that the pheromone pathway no longer plays an active role in mating type determination, suggesting an undiscovered mechanism by which mating partner recognition is controlled in these species. This further suggests that there has been a redirection of the underlying genetic mechanisms that regulate sexual development in Colletotrichum species. This research thus provides a foundation from which further interrogation of this topic can take place.


Knockdown of ecdysone receptor in male desert locusts affects relative weight of accessory glands and mating behavior.

  • Joachim Van Lommel‎ et al.
  • Journal of insect physiology‎
  • 2022‎

Locusts have been known as pests of agricultural crops for thousands of years. Recently (2018-2021) the world has faced the largest swarms of desert locusts, Schistocerca gregaria, in decades and food security in large parts of Africa and Asia was under extreme pressure. There is an urgent need for the development of highly specific bio-rational pesticides to combat these pests. However, to do so, fundamental research is needed to better understand the molecular mechanisms behind key physiological processes underpinning swarm formation, such as development and reproduction. The scope of this study is to investigate the possible role(s) of the ecdysteroid receptor in the reproductive physiology of male S. gregaria. Ecdysteroids and juvenile hormones are two important classes of insect hormones and are key regulators of post-embryonic development. Ecdysteroids are best known for their role in moulting and exert their function via a heterodimer consisting of the nuclear receptors ecdysone receptor (EcR) and retinoid-X receptor (RXR). To gain insight into the role of SgEcR and/or SgRXR in the male reproductive physiology of S. gregaria we performed RNAi-induced knockdown experiments. A knockdown of SgEcR, but not SgRXR, resulted in an increased relative weight of the male accessory glands (MAG). Furthermore, the knockdown of these genes, either in combination or separately, caused a significant delay in the onset of mating behavior. Nevertheless, the MAG appeared to mature normally and the fertility of mated males was not affected. The high transcript levels of SgEcR in the fat body, especially towards the end of sexual maturation in both males and females, represent a remarkable finding since as of yet the exact role of SgEcR in this tissue in S. gregaria is unknown. Finally, our data suggest that in some cases SgEcR and SgRXR might act independently of each other. This is supported by the fact that the spatiotemporal expression profiles of SgEcR and SgRXR do not always coincide and that knockdown of SgEcR, but not SgRXR, significantly affected the relative weight of the MAG.


Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response in Saccharomyces cerevisiae.

  • Christopher G Alvaro‎ et al.
  • Genetics‎
  • 2016‎

G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate stimulus-dependent activation of cognate heterotrimeric G-proteins, triggering ensuing downstream cellular responses. Tight regulation of GPCR-evoked pathways is required because prolonged stimulation can be detrimental to an organism. Ste2, a GPCR in Saccharomyces cerevisiae that mediates response of MATa haploids to the peptide mating pheromone α-factor, is down-regulated by both constitutive and agonist-induced endocytosis. Efficient agonist-stimulated internalization of Ste2 requires its association with an adaptor protein, the α-arrestin Rod1/Art4, which recruits the HECT-domain ubiquitin ligase Rsp5, allowing for ubiquitinylation of the C-terminal tail of the receptor and its engagement by the clathrin-dependent endocytic machinery. We previously showed that dephosphorylation of Rod1 by calcineurin (phosphoprotein phosphatase 2B) is required for optimal Rod1 function in Ste2 down-regulation. We show here that negative regulation of Rod1 by phosphorylation is mediated by two distinct stress-activated protein kinases, Snf1/AMPK and Ypk1/SGK1, and demonstrate both in vitro and in vivo that this phospho-regulation impedes the ability of Rod1 to promote mating pathway desensitization. These studies also revealed that, in the absence of its phosphorylation, Rod1 can promote adaptation independently of Rsp5-mediated receptor ubiquitinylation, consistent with recent evidence that α-arrestins can contribute to cargo recognition by both clathrin-dependent and clathrin-independent mechanisms. However, in cells lacking a component (formin Bni1) required for clathrin-independent entry, Rod1 derivatives that are largely unphosphorylated and unable to associate with Rsp5 still promote efficient adaptation, indicating a third mechanism by which this α-arrestin promotes desensitization of the pheromone-response pathway.


Recycling of the yeast a-factor receptor.

  • L Chen‎ et al.
  • The Journal of cell biology‎
  • 2000‎

The yeast a-factor receptor (Ste3p) is subject to two mechanistically distinct modes of endocytosis: a constitutive, ligand-independent pathway and a ligand-dependent uptake pathway. Whereas the constitutive pathway leads to degradation of the receptor in the vacuole, the present work finds that receptor internalized via the ligand-dependent pathway recycles. With the a-factor ligand continuously present in the culture medium, trafficking of the receptor achieves an equilibrium in which continuing uptake to endosomal compartments is balanced by its recycling return to the plasma membrane. Withdrawal of ligand from the medium leads to a net return of the internalized receptor back to the plasma membrane. Although recycling is demonstrated for receptors that lack the signal for constitutive endocytosis, evidence is provided indicating a participation of recycling in wild-type Ste3p trafficking as well: a-factor treatment both slows wild-type receptor turnover and results in receptor redistribution to intracellular endosomal compartments. Apparently, a-factor acts as a switch, diverting receptor from vacuole-directed endocytosis and degradation, to recycling. A model is presented for how the two Ste3p endocytic modes may collaborate to generate the polarized receptor distribution characteristic of mating cells.


PTPN23 binds the dynein adaptor BICD1 and is required for endocytic sorting of neurotrophin receptors.

  • Marta I Budzinska‎ et al.
  • Journal of cell science‎
  • 2020‎

Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF)-activated TrkB (also known as NTRK2) and p75NTR (also known as NGFR) in motor neurons. Here, using a proteomics approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1-knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors.


Oligomerization of yeast α-factor receptor detected by fluorescent energy transfer between ligands.

  • Sara M Connelly‎ et al.
  • Biophysical journal‎
  • 2021‎

G-protein-coupled receptors (GPCRs) comprise a large superfamily of transmembrane receptors responsible for transducing responses to the binding of a wide variety of hormones, neurotransmitters, ions, and other small molecules. There is extensive evidence that GPCRs exist as homo-and hetero-oligomeric complexes; however, in many cases, the role of oligomerization and the extent to which it occurs at low physiological levels of receptor expression in cells remain unclear. We report here the use of flow cytometry to detect receptor-receptor interactions based on fluorescence resonance energy transfer between fluorescently labeled cell-impermeant ligands bound to yeast α-mating pheromone receptors that are members of the GPCR superfamily. A novel, to our knowledge, procedure was used to analyze energy transfer as a function of receptor occupancy by donor and acceptor ligands. Measurements of loss of donor fluorescence due to energy transfer in cells expressing high levels of receptors were used to calibrate measurements of enhanced acceptor emission due to energy transfer in cells expressing low levels of receptors. The procedure allows determination of energy transfer efficiencies over a 50-fold range of expression of full-length receptors at the surface of living cells without the need to create fluorescent or bioluminescent fusion proteins. Energy transfer efficiencies for fluorescently labeled derivatives of the receptor agonist α-factor do not depend on receptor expression level and are unaffected by C-terminal truncation of receptors. Fluorescently labeled derivatives of α-factor that act as receptor antagonists exhibit higher transfer efficiencies than those for labeled agonists. Although the approach cannot determine the number of receptors per oligomer, these results demonstrate that ligand-bound, native α-factor receptors exist as stable oligomers in the cell membranes of intact yeast cells at normal physiological expression levels and that the extent of oligomer formation is not dependent on the concentration of receptors in the membrane.


The AP-1 transcription factor JunB is required for Th17 cell differentiation.

  • Soh Yamazaki‎ et al.
  • Scientific reports‎
  • 2017‎

Interleukin (IL)-17-producing T helper (Th17) cells are crucial for host defense against extracellular microbes and pathogenesis of autoimmune diseases. Here we show that the AP-1 transcription factor JunB is required for Th17 cell development. Junb-deficient CD4+ T cells are able to develop in vitro into various helper T subsets except Th17. The RNA-seq transcriptome analysis reveals that JunB is crucial for the Th17-specific gene expression program. Junb-deficient mice are completely resistant to experimental autoimmune encephalomyelitis, a Th17-mediated inflammatory disease, and naive T helper cells from such mice fail to differentiate into Th17 cells. JunB appears to activate Th17 signature genes by forming a heterodimer with BATF, another AP-1 factor essential for Th17 differentiation. The mechanism whereby JunB controls Th17 cell development likely involves activation of the genes for the Th17 lineage-specifying orphan receptors RORγt and RORα and reduced expression of Foxp3, a transcription factor known to antagonize RORγt function.


Effects of EBN on embryo implantation, plasma concentrations of reproductive hormones, and uterine expressions of genes of PCNA, steroids, growth factors and their receptors in rats.

  • Abdulla A Albishtue‎ et al.
  • Theriogenology‎
  • 2019‎

This study was conducted to determine the effect of edible bird's nest (EBN) supplement on uterine function and embryo-implantation rate. A total of 24 adult female rats, divided equally into four groups, were treated with different doses of EBN for 8 weeks. In the last week of treatment, intact fertile male rats were introduced into each group (three per group) for overnight for mating. On day 7 post-mating (post-implantation), blood samples were collected from the hearts of anaesthetised rats that were later sacrificed. The uteri were removed for assessment of embryo implantation rate, histological and electron microscopic examination, and immunohistochemical analyses. Results showed that as the concentration of EBN supplemented increased, the pregnancy and embryo implantation rates were also increased in the treated groups; significantly at G3 and G4. Although histological evaluation did not show much difference among the groups, scanning electron microscopic examination showed enhanced development of elongated microvilli and pinopods in G4. Results also revealed up-regulated expressions of epidermal growth factor (EGF), EGF receptor (EGFR), vascular endothelial growth factor (VEGF), proliferating cell nulear antigen (PCNA), and progesterone and estrogen receptors (P4R, E2R) in the uteri of treated groups. Moreover, plasma E2, P4, growth hormone (GH) and prolactin (P) levels were higher (p < 0.05) in G3 and G4. The EBN increased the antioxidant (AO) and total AO capacities (TAC) and reduced oxidative stress (OS) levels in pregnant rats. In conclusion, findings of this study revealed that EBN enhances fertility and embryo implantation rate via promoting proliferation and differentiation of uterine structures as evidenced by the upregulation of the expressions of steroid receptors, EGF, EGFR, VEGF, and PCNA in the uterus. Furthermore, observations of improved growth of ultrastructural pinopods that assist in embryo attachment with uterine epithelium, increased concentrations of E2, P4, GH and P levels, as well as increased AO capacities with reduced OS levels in the treated groups might reflect additional possible mechanisms by which EBN enhances embryo implantation rate and pregnancy success.


Gene expression profiles of some cytokines, growth factors, receptors, and enzymes (GM-CSF, IFNγ, MMP-2, IGF-II, EGF, TGF-β, IGF-IIR) during pregnancy in the cat uterus.

  • Ozgecan Korkmaz Agaoglu‎ et al.
  • Theriogenology‎
  • 2016‎

Early pregnancy is one of the most critical periods of pregnancy, and many factors such as cytokines, enzymes, and members of the immune system have to cooperate in a balanced way. In the present study, the gene expression profiles of factors associated with pregnancy such as EGF, transforming growth factor beta, granulocyte-macrophage colony-stimulating factor, interferon gamma, insulin-like growth factor 2, insulin-like growth factor 2 receptor, and matrix metalloproteinase 2 were analyzed in uterine tissues of female cats. The cats were assigned to five groups: G1 (embryo positive, n = 7; 7th day after mating), G2 (after implantation, n = 7; 20th day after mating), G3 (midgestation, n = 7; 24-25th day after mating), G4 (late gestation, n = 7; 30-45th day after mating), G5 (oocyte group, n = 7; 7th day after estrus). Tissue samples from the uterus and placenta were collected after ovariohysterectomy. Relative messenger RNA levels were determined by real-time polymerase chain reaction. All the factors examined were detected in all tissue samples. In the course of pregnancy, significantly higher expression of EGF and matrix metalloproteinase 2 in G2 than in G1 was observed (P < 0.05). Insulin-like growth factor 2 expression was higher in all groups than in G1 (P < 0.05). Upregulation of EGF during implantation was detected. The expression of interferon gamma was significantly higher in G3 than in G1 (P < 0.05). Transforming growth factor beta and granulocyte-macrophage colony-stimulating factor were constantly expressed in all groups. In conclusion, the expressions of these factors in feline uterine tissue at different stages of pregnancy might indicate that these factors play roles in the development of pregnancy such as trophoblast invasion, vascularization, implantation, and placentation.


In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha.

  • S V Pakala‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

The islet-infiltrating and disease-causing leukocytes that are a hallmark of insulin-dependent diabetes mellitus produce and respond to a set of cytokine molecules. Of these, interleukin 1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma are perhaps the most important. However, as pleiotropic molecules, they can impact the path leading to beta cell apoptosis and diabetes at multiple points. To understand how these cytokines influence both the formative and effector phases of insulitis, it is critical to determine their effects on the assorted cell types comprising the lesion: the effector T cells, antigen-presenting cells, vascular endothelium, and target islet tissue. Here, we report using nonobese diabetic chimeric mice harboring islets deficient in specific cytokine receptors or cytokine-induced effector molecules to assess how these compartmentalized loss-of-function mutations alter the events leading to diabetes. We found that islets deficient in Fas, IFN-gamma receptor, or inducible nitric oxide synthase had normal diabetes development; however, the specific lack of TNF- alpha receptor 1 (p55) afforded islets a profound protection from disease by altering the ability of islet-reactive, CD4(+) T cells to establish insulitis and subsequently destroy islet beta cells. These results argue that islet cells play a TNF-alpha-dependent role in their own demise.


GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship.

  • Yuta Mabuchi‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.


A modular yeast biosensor for low-cost point-of-care pathogen detection.

  • Nili Ostrov‎ et al.
  • Science advances‎
  • 2017‎

The availability of simple, specific, and inexpensive on-site detection methods is of key importance for deployment of pathogen surveillance networks. We developed a nontechnical and highly specific colorimetric assay for detection of pathogen-derived peptides based on Saccharomyces cerevisiae-a genetically tractable model organism and household product. Integrating G protein-coupled receptors with a visible, reagent-free lycopene readout, we demonstrate differential detection of major human, plant, and food fungal pathogens with nanomolar sensitivity. We further optimized a one-step rapid dipstick prototype that can be used in complex samples, including blood, urine, and soil. This modular biosensor can be economically produced at large scale, is not reliant on cold-chain storage, can be detected without additional equipment, and is thus a compelling platform scalable to global surveillance of pathogens.


A scalable peptide-GPCR language for engineering multicellular communication.

  • Sonja Billerbeck‎ et al.
  • Nature communications‎
  • 2018‎

Engineering multicellularity is one of the next breakthroughs for Synthetic Biology. A key bottleneck to building multicellular systems is the lack of a scalable signaling language with a large number of interfaces that can be used simultaneously. Here, we present a modular, scalable, intercellular signaling language in yeast based on fungal mating peptide/G-protein-coupled receptor (GPCR) pairs harnessed from nature. First, through genome-mining, we assemble 32 functional peptide-GPCR signaling interfaces with a range of dose-response characteristics. Next, we demonstrate that these interfaces can be combined into two-cell communication links, which serve as assembly units for higher-order communication topologies. Finally, we show 56 functional, two-cell links, which we use to assemble three- to six-member communication topologies and a three-member interdependent community. Importantly, our peptide-GPCR language is scalable and tunable by genetic encoding, requires minimal component engineering, and should be massively scalable by further application of our genome mining pipeline or directed evolution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: