Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 482 papers

Expression of leptin and leptin receptors in colorectal cancer-an immunohistochemical study.

  • Saad M Al-Shibli‎ et al.
  • PeerJ‎
  • 2019‎

Obesity is demonstrated to be a risk factor in the development of cancers of various organs, such as colon, prostate, pancreas and so on. Leptine (LEP) is the most renowned of the adipokines. As a hormone, it mediates its effect through leptin receptor (LEPR), which is widely expressed in various tissues including colon mucosa. In this study, we have investigated the degree of expression of LEP and LEPR in colorectal cancer (CRC). We collected 44 surgically resected colon cancer tissues along with normal adjacent colon tissue (NACT) from a sample of CRC patients from the Malaysian population and looked for leptin and leptin receptors using immunohistochemistry (IHC). All the samples showed low presence of both LEP and LEPR in NACT, while both LEP and LEPR were present at high intensity in the cancerous tissues with 100% and 97.7% prevalence, respectively. Both were sparsed in the cytoplasm and were concentrated beneath the cell membrane. However, we did not find any significant correlation between their expression and pathological parameters like grade, tumor size, and lymph node involvement. Our study further emphasizes the possible causal role of LEP and LEPR with CRC, and also the prospect of using LEPR as a possible therapeutic target.


Expression of leptin receptors in hepatic sinusoidal cells.

  • Kenichi Ikejima‎ et al.
  • Comparative hepatology‎
  • 2004‎

Emerging evidence has suggested a critical role of leptin in hepatic inflammation and fibrogenesis, however, the precise mechanisms underlying the profibrogenic action of leptin in the liver has not been well elucidated. Therefore, the present study was designed to investigate the expression and functions of leptin receptors (Ob-R) in hepatic sinusoidal cells. Hepatic stellate cells (HSCs), Kupffer cells and sinusoidal endothelial cells (SECs) were isolated from rat livers by in situ collagenase perfusion followed by differential centrifugation technique, and expression of Ob-Ra and Ob-Rb, short and long Ob-R isoforms, respectively, were analyzed by RT-PCR. Ob-Ra mRNA was detected ubiquitously in HSCs and SECs. In contrast, Ob-Rb was detected clearly only in SECs and Kupffer cells, but not in 7-day cultured HSCs. Indeed, tyrosine-phosphorylation of STAT-3, a downstream event of Ob-Rb signaling, was observed in SECs, but not in HSCs, 1 hr after incubation with leptin. Further, leptin increased AP-1 DNA binding activity and TGF-beta 1 mRNA levels in Kupffer cells and SECs, whereas leptin failed to increase TGF-beta 1 mRNA in HSCs. These findings indicated that SECs and Kupffer cells, but not HSCs, express functional leptin receptors, through which leptin elicits production of TGF-beta 1. It is hypothesized therefore that leptin, produced systemically from adipocytes and locally from HSCs, up-regulates TGF-beta 1 thereby facilitate tissue repairing and fibrogenesis in the sinusoidal microenvironment.


POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels.

  • Alexandre Caron‎ et al.
  • eLife‎
  • 2018‎

Leptin is critical for energy balance, glucose homeostasis, and for metabolic and neuroendocrine adaptations to starvation. A prevalent model predicts that leptin's actions are mediated through pro-opiomelanocortin (POMC) neurons that express leptin receptors (LEPRs). However, previous studies have used prenatal genetic manipulations, which may be subject to developmental compensation. Here, we tested the direct contribution of POMC neurons expressing LEPRs in regulating energy balance, glucose homeostasis and leptin secretion during fasting using a spatiotemporally controlled Lepr expression mouse model. We report a dissociation between leptin's effects on glucose homeostasis versus energy balance in POMC neurons. We show that these neurons are dispensable for regulating food intake, but are required for coordinating hepatic glucose production and for the fasting-induced fall in leptin levels, independent of changes in fat mass. We also identify a role for sympathetic nervous system regulation of the inhibitory adrenergic receptor (ADRA2A) in regulating leptin production. Collectively, our findings highlight a previously unrecognized role of POMC neurons in regulating leptin levels.


Leptin Receptors in RIP-Cre25Mgn Neurons Mediate Anti-dyslipidemia Effects of Leptin in Insulin-Deficient Mice.

  • Ashish Singha‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Leptin is a potent endocrine hormone produced by adipose tissue and regulates a broad range of whole-body metabolism such as glucose and lipid metabolism, even without insulin. Central leptin signaling can lower hyperglycemia in insulin-deficient rodents via multiple mechanisms, including improvements of dyslipidemia. However, the specific neurons that regulate anti-dyslipidemia effects of leptin remain unidentified. Here we report that leptin receptors (LEPRs) in neurons expressing Cre recombinase driven by a short fragment of a promoter region of Ins2 gene (RIP-Cre25Mgn neurons) are required for central leptin signaling to reverse dyslipidemia, thereby hyperglycemia in insulin-deficient mice. Ablation of LEPRs in RIP-Cre25Mgn neurons completely blocks glucose-lowering effects of leptin in insulin-deficient mice. Further investigations reveal that insulin-deficient mice lacking LEPRs in RIP-Cre25Mgn neurons (RIP-CreΔLEPR mice) exhibit greater lipid levels in blood and liver compared to wild-type controls, and that leptin injection into the brain does not suppress dyslipidemia in insulin-deficient RIP-CreΔLEPR mice. Leptin administration into the brain combined with acipimox, which lowers blood lipids by suppressing triglyceride lipase activity, can restore normal glycemia in insulin-deficient RIP-CreΔLEPR mice, suggesting that excess circulating lipids are a driving-force of hyperglycemia in these mice. Collectively, our data demonstrate that LEPRs in RIP-Cre25Mgn neurons significantly contribute to glucose-lowering effects of leptin in an insulin-independent manner by improving dyslipidemia.


Modulation of the leptin receptors expression in breast cancer cell lines exposed to leptin and tamoxifen.

  • Rodolfo López Linares‎ et al.
  • Scientific reports‎
  • 2019‎

One of the factors that has increased the incidence and worse prognosis of breast cancer is obesity. In this condition, high amounts of leptin are secreted, which have proliferative, mitogenic, antiapoptotic, and proinflammatory activity that may be antagonistic to treatment with tamoxifen, considered the first choice. The modulation evaluation of leptin receptor expression in the presence of leptin and tamoxifen stimuli was performed in breast cancer cell lines MCF 7, MDA MB 231 and HCC 1937 as a model of initial approach for the study of breast cancer subtypes and their behavior to the action response of adipokines and their possible relationship with the mechanism of resistance to chemotherapeutics such as tamoxifen in ER positive cell lines and triple negative marker. It was determined that leptin increases the proliferation of the three breast cancer cell lines and tamoxifen is able to exert an antiproliferative effect on them, however, it was identified that the ability of tamoxifen to decrease the proliferation of cancer cells is diminished in the presence of leptin, in addition to changes in the modulation of the expression of its receptor. It was determined that tamoxifen induces a greater modulation of the expression of ObRb in cell lines, which may be related to the decrease of its antiproliferative activity, while leptin generates a proliferative effect in the three cell lines and could participate in the tamoxifen treatment resistance mechanism.


Endothelial cell leptin receptors, leptin and interleukin-8 in the pathogenesis of preeclampsia: An in-vitro study.

  • Sefa Arlıer‎
  • Turkish journal of obstetrics and gynecology‎
  • 2017‎

Increased leptin hormone and leptin receptor may enhance the generation of proinflammatory cytokines by endothelial cells and lead to endothelial dysfunction. This study assessed the umbilical cord endothelial leptin receptor levels in preeclampsia and investigated the effect of leptin on endothelial interleukin-8 (IL-8) production.


Leptin receptors are developmentally regulated in rat pituitary and hypothalamus.

  • Barbara A Morash‎ et al.
  • Molecular and cellular endocrinology‎
  • 2003‎

We have previously reported that leptin is expressed in adult rat brain and pituitary gland, though the role of leptin in these sites has not been determined. Leptin mRNA is developmentally regulated in the brain and pituitary of male and female rats during early postnatal development, suggesting a role in the maturation of the brain-pituitary system. Here, we sought to extend our previous studies by evaluating (1) the ontogeny of leptin receptor mRNA levels in rat brain and pituitary and (2) pituitary leptin protein levels in neonatal and pre-pubertal rats. Pituitary leptin concentration was highest shortly after birth (postnatal day (PD) 4, 25 ng/mg protein) and fell significantly throughout postnatal development and into adulthood (PD 60, 3.5 ng/mg protein; P<0.005) coincident with a decline in pituitary leptin mRNA levels. Significant age-related effects on leptin receptor mRNA levels were also observed in the pituitary and the hypothalamus of male and female rats using semi-quantitative RT-PCR analysis. In the pituitary, the short form (OBRa) mRNA levels were highest in neonatal rats (PD 4) but declined throughout postnatal development (PD 4-22) paralleling the fall in pituitary leptin mRNA and protein levels. The long form (OBRb) mRNA levels were unaffected by age between PD 4 and 22. In contrast, hypothalamic, levels of OBRb mRNA were very low to undetectable shortly after birth (PD 4) and rose significantly between PD 4 and 14/22 while levels of OBRa mRNA were not significantly different between PD 4 and 22. Immunohistochemical detection of leptin receptor immunoreactivity (all forms) revealed the presence of OBR-like protein in pituitary and hypothalamus as early as PD 4. Cortical leptin receptor mRNA levels were similar throughout early postnatal development. No gender-related differences in leptin receptor mRNA levels were noted in brain or pituitary. In conclusion, these data, together with our previous work, indicate that the neonatal pituitary gland expresses leptin and leptin receptors at levels far in excess of those observed in mature rats. The pituitary is thus quite different from adipose tissue, hypothalamus and cerebral cortex, in which neonatal leptin expression is lowest at birth. Since neonatal pituitary leptin receptor expression is also elevated, it is possible that pituitary-derived leptin plays some role in the development of the hypothalamic-pituitary system.


Morphology and gene expression in mouse placentas lacking leptin receptors.

  • Kelly E Pollock‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

In the pregnant mouse, the hormone leptin is primarily produced by adipose tissue and does not significantly cross the placenta into fetal circulation. Nonetheless, leptin treatment during gestation affects offspring phenotypes. Leptin treatment also affects placental trophoblast cells in vitro, by altering proliferation, invasion and nutrient transport. The goal of the present study was to determine whether the absence of placental leptin receptors alters placental development and gene expression. Leprdb-3j+ mice possessing only one functional copy of the leptin receptor were mated to obtain wildtype, Leprdb-3j+ and Leprdb-3j/db-3j conceptuses, which were then transferred to wildtype recipient dams. Placentas were collected at gestational d18.5 to examine placental morphology and gene expression. Placentas lacking functional leptin receptor had reduced weights, but were otherwise morphologically indistinguishable from control placentas. Relative mRNA levels, however, were altered in Leprdb-3j/db-3j placentas, particularly transcripts related to amino acid and lipid metabolism and transport. Consistent with a previous in vitro study, leptin was found to promote expression of stathmin, a positive regulator of trophoblast invasion, and of serotonin receptors, potential mediators of offspring neurological development. Overall placental leptin receptor was found not to play a significant role in morphological development of the placenta, but to regulate placental gene expression, including in metabolic pathways that affect fetal growth.


Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

  • Barbara Bosier‎ et al.
  • Molecular metabolism‎
  • 2013‎

Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.


Deletion of endothelial leptin receptors in mice promotes diet-induced obesity.

  • Rajinikanth Gogiraju‎ et al.
  • Scientific reports‎
  • 2023‎

Obesity promotes endothelial dysfunction. Endothelial cells not only respond, but possibly actively promote the development of obesity and metabolic dysfunction. Our aim was to characterize the role of endothelial leptin receptors (LepR) for endothelial and whole body metabolism and diet-induced obesity. Mice with tamoxifen-inducible, Tie2.Cre-ERT2-mediated deletion of LepR in endothelial cells (End.LepR knockout, KO) were fed high-fat diet (HFD) for 16 weeks. Body weight gain, serum leptin levels, visceral adiposity and adipose tissue inflammation were more pronounced in obese End.LepR-KO mice, whereas fasting serum glucose and insulin levels or the extent of hepatic steatosis did not differ. Reduced brain endothelial transcytosis of exogenous leptin, increased food intake and total energy balance were observed in End.LepR-KO mice and accompanied by brain perivascular macrophage accumulation, whereas physical activity, energy expenditure and respiratory exchange rates did not differ. Metabolic flux analysis revealed no changes in the bioenergetic profile of endothelial cells from brain or visceral adipose tissue, but higher glycolysis and mitochondrial respiration rates in those isolated from lungs. Our findings support a role for endothelial LepRs in the transport of leptin into the brain and neuronal control of food intake, and also suggest organ-specific changes in endothelial cell, but not whole-body metabolism.


Duplicated leptin receptors in two species of eel bring new insights into the evolution of the leptin system in vertebrates.

  • Marina Morini‎ et al.
  • PloS one‎
  • 2015‎

Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.


Expression of AdipoR1 and AdipoR2 Receptors as Leptin-Breast Cancer Regulation Mechanisms.

  • Martha Daniela Mociño-Rodríguez‎ et al.
  • Disease markers‎
  • 2017‎

The development of breast cancer is influenced by the adipose tissue through the proteins leptin and adiponectin. However, there is little research concerning AdipoR1 and AdipoR2 receptors and the influence of leptin over them. The objective of this work was to analyze the expression of AdipoR1 and AdipoR2, modulated by differential concentrations of leptin in an obesity model (10 ng/mL, 100 ng/mL, and 1000 ng/mL) associated with breast cancer in MCF-7 and HCC1937 cell lines. Each cell line was characterized through immunohistochemistry, and the expression of AdipoR1 and AdipoR2 was analyzed by PCR in real time using TaqMan® probes. Leptin induced an increase in cell population of MCF-7 (23.8%, 10 ng/mL, 48 h) and HCC1937 (17.24%, 1000 ng/mL, 72 h). In MCF-7, the expression of AdipoR1 decreased (3.81%, 1000 ng/mL) and the expression of AdipoR2 increased by 13.74 times (10 ng/mL) with regard to the control. In HCC1937, the expression of AdipoR1 decreased by 86.28% (10 ng/mL), as well as the expression of AdipoR2 (50.3%, 100 ng/mL). In regard to the results obtained, it could be concluded that leptin has an effect over the expression of AdipoR1 and AdipoR2 mRNA.


Selective deletion of leptin receptors in gonadotropes reveals activin and GnRH-binding sites as leptin targets in support of fertility.

  • Noor Akhter‎ et al.
  • Endocrinology‎
  • 2014‎

The adipokine, leptin (LEP), is a hormonal gateway, signaling energy stores to appetite-regulatory neurons, permitting reproduction when stores are sufficient. Dual-labeling for LEP receptors (LEPRs) and gonadotropins or GH revealed a 2-fold increase in LEPR during proestrus, some of which was seen in LH gonadotropes. We therefore investigated LEPR functions in gonadotropes with Cre-LoxP technology, deleting the signaling domain of the LEPR (Lepr-exon 17) with Cre-recombinase driven by the rat LH-β promoter (Lhβ-cre). Selectivity of the deletion was validated by organ genotyping and lack of LEPR and responses to LEP by mutant gonadotropes. The mutation had no impact on growth, body weight, the timing of puberty, or pregnancy. Mutant females took 36% longer to produce their first litter and had 50% fewer pups/litter. When the broad impact of the loss of gonadotrope LEPR on all pituitary hormones was studied, mutant diestrous females had reduced serum levels of LH (40%), FSH (70%), and GH (54%) and mRNA levels of Fshβ (59%) and inhibin/activin β A and β B (25%). Mutant males had reduced serum levels of GH (74%), TSH (31%), and prolactin (69%) and mRNA levels of Gh (31%), Ghrhr (30%), Fshβ (22%), and glycoprotein α-subunit (Cga) (22%). Serum levels of LEP and ACTH and mRNA levels of Gnrhr were unchanged. However, binding to GnRH receptors was reduced in LEPR-null LH or FSH gonadotropes by 82% or 89%, respectively, in females (P < .0001) and 27% or 53%, respectively, in males (P < .03). This correlated with reductions in GnRH receptor protein immunolabeling, suggesting that LEP's actions may be posttranscriptional. Collectively, these studies highlight the importance of LEP to gonadotropes with GnRH-binding sites and activin as potential targets. LEP may modulate population growth, adjusting the number of offspring to the availability of food supplies.


Leptin Prevents Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of Dopamine Receptors.

  • Rafaela Carneiro Cordeiro‎ et al.
  • Frontiers in psychiatry‎
  • 2019‎

Depression is a chronic and recurrent disorder, associated with high morbidity and risk of suicide. Leptin was firstly described as an anti-obesity hormone, but several actions of leptin in CNS have been reported. In fact, leptin regulates dopaminergic neurotransmission in mesolimbic areas and has antidepressant-like properties in stress-based models. In the present study, we investigated, for the first time, putative antidepressant-like effects of leptin in an animal model of depressive-like behaviors induced by lipopolysaccharide (LPS), and the potential involvement of dopamine receptors as mediators of those behavioral effects. Mice were injected leptin (1.5 mg/kg, IP) or imipramine prior to LPS administration. To evaluate the involvement of dopamine receptors, different experimental groups were pretreated with either the dopaminergic antagonist SCH23390, for D1 receptors or raclopride, for D2/D3 receptors, prior to leptin injection. Twenty-four hours post-LPS, mice were submitted to the forced swimming and sucrose preference tests. In addition, IL-1β levels were determined in the prefrontal cortex (PFC), hippocampus and striatum. BDNF levels were measured in the hippocampus. Our results showed that leptin, similarly to imipramine, prevented the core behavioral alterations induced by LPS (despair-like behavior and anhedonia), without altering locomotion. In neurochemical analysis, leptin restored LPS-induced changes in IL-1β levels in the PFC and striatum, and increased BDNF levels in the hippocampus. The blockade of dopamine D1 and D2/D3 receptors inhibited leptin's antidepressant-like effects, whilst only the blockade of D1-like receptors blunted leptin-induced increments in prefrontal IL-1β levels. Our results indicate that leptin has antidepressant-like effects in an inflammatory model of depression with the contribution, at least partial, of dopamine receptors.


Influence of leptin and its receptors on individuals under chronic social stress behavior.

  • Renata M F Mélo‎ et al.
  • Frontiers in endocrinology‎
  • 2024‎

Stress is the body's physiological reaction to a dangerous or threatening situation, leading to a state of alertness. This reaction is necessary for developing an effective adaptive response to stress and maintaining the body's homeostasis. Chronic stress, caused mainly by social stress, is what primarily affects the world's population. In the last decades, the emergence of psychological disorders in humans has become more frequent, and one of the symptoms that can be observed is aggressiveness. In the brain, stress can cause neuronal circuit alterations related to the action of hormones in the central nervous system. Leptin, for example, is a hormone capable of acting in brain regions and neuronal circuits important for behavioral and emotional regulation. This study investigated the correlation between chronic social stress, neuroendocrine disorders, and individual behavioral changes. Then, leptin and its receptors' anatomical distribution were evaluated in the brains of mice subjected to a protocol of chronic social stress. The model of spontaneous aggression (MSA) is based on grouping young mice and posterior regrouping of the same animals as adults. According to the regrouping social stress, we categorized the mice into i) harmonic, ii) attacked, and iii) aggressive animals. For leptin hormone evaluation, we quantified plasma and brain concentrations by ELISA and evaluated its receptor and isoform expression by western blotting. Moreover, we verified whether stress or changes in leptin levels interfered with the animal's body weight. Only attacked animals showed reduced plasma leptin concentration and weight gain, besides a higher expression of the high-molecular-weight leptin receptor in the amygdala and the low-molecular-weight receptor in the hippocampal region. Aggressive animals showed a reduction in the cerebral concentration of leptin in the hippocampus and a reduced high-and low-molecular-weight leptin receptor expression in the amygdala. The harmonic animals showed a reduction in the cerebral concentration of leptin in the pituitary and a reduced expression of the high-molecular-weight leptin receptor in the amygdala. We then suggest that leptin and its receptors' expression in plasma and specific brain areas are involved in how individuals react in stressful situations, such as regrouping stress in MSA.


Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors.

  • Kazem Nejati-Koshki‎ et al.
  • Cancer cell international‎
  • 2014‎

Recent studies suggested that leptin as a mitogenic factor might play an important role in the process of initiation and progression of human cancer. Therefore, it could be considered as a target for breast cancer therapy. A previous study has showed that expression of leptin gene could be modulated by activation of estrogen receptors. Curcumin is a diferuloylmethane that has been shown to interfere with multiple cell signaling pathways and extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. Based on the fact that targeting of leptin could be considered as a novel strategy for breast cancer therapy, the aim of this study is the investigation of potentiality of curcumin for inhibition of leptin gene expression and secretion, and also, its link with expression of estrogen receptors.


Impaired Ca(2+) signaling in β-cells lacking leptin receptors by Cre-loxP recombination.

  • Eva Tudurí‎ et al.
  • PloS one‎
  • 2013‎

Obesity is a major risk factor for diabetes and is typically associated with hyperleptinemia and a state of leptin resistance. The impact of chronically elevated leptin levels on the function of insulin-secreting β-cells has not been elucidated. We previously generated mice lacking leptin signaling in β-cells by using the Cre-loxP strategy and showed that these animals develop increased body weight and adiposity, hyperinsulinemia, impaired glucose-stimulated insulin secretion and insulin resistance. Here, we performed several in vitro studies and observed that β-cells lacking leptin signaling in this model are capable of properly metabolizing glucose, but show impaired intracellular Ca(2+) oscillations and lack of synchrony within the islets in response to glucose, display reduced response to tolbutamide and exhibit morphological abnormalities including increased autophagy. Defects in intracellular Ca(2+) signaling were observed even in neonatal islets, ruling out the possible contribution of obesity to the β-cell irregularities observed in adults. In parallel, we also detected a disrupted intracellular Ca(2+) pattern in response to glucose and tolbutamide in control islets from adult transgenic mice expressing Cre recombinase under the rat insulin promoter, despite these animals being glucose tolerant and secreting normal levels of insulin in response to glucose. This unexpected observation impeded us from discerning the consequences of impaired leptin signaling as opposed to long-term Cre expression in the function of insulin-secreting cells. These findings highlight the need to generate improved Cre-driver mouse models or new tools to induce Cre recombination in β-cells.


Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats.

  • Helge Müller-Fielitz‎ et al.
  • British journal of pharmacology‎
  • 2015‎

AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear.


Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

  • Sangdeuk Ha‎ et al.
  • PloS one‎
  • 2013‎

Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+) mice and in Leprb (db/db) mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.


Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity.

  • Kevin M Gamber‎ et al.
  • PloS one‎
  • 2012‎

Diet-induced obesity (DIO) in rodents is characterized by impaired activation of signal-transducer and activator of transcription 3 (STAT3) by leptin receptors (LepRb) within the hypothalamic arcuate nucleus. This signaling defect likely plays an important role in development of DIO. However, the neuro-chemical identity of the leptin-STAT3 resistant arcuate neurons has not been determined and the underlying mechanisms responsible for development of cellular leptin resistance remain unclear. To investigate this, we first measured arcuate gene expression of known key signaling components of the LepRb signaling pathway and tested whether specifically the critical arcuate pro-opiomelanocortin (POMC) neurons are resistant to LepRb-STAT3 signaling in mice given a high-fat-diet (HFD) compared to mice provided a low-fat control diet (LFD). We found that leptin-dependent STAT3 phosphorylation was decreased within POMC neurons of HFD mice. In addition, Leprb mRNA and suppressor of cytokine signaling 3 (Socs3) mRNA were elevated in the arcuate of HFD mice. To investigate whether increased LepRb expression per se in POMC neurons can influence development of DIO and Socs3 expression, we created mice that over-express LepRb selectively in POMC neurons (POMC-LepRb). No differences in body weight, fat mass or food intake were found between LFD POMC-LepRb mice and LFD controls. Surprisingly, body weight, fat mass and caloric intake of HFD POMC-LepRb mice was markedly higher than HFD control mice. In addition, arcuate Socs3 mRNA was increased in HFD POMC-LepRb mice compared to HFD controls. These data show that specifically POMC neurons of DIO mice are resistant to STAT3 activation by leptin, indicating that those cells might play a role in development of DIO. Furthermore, over-expression of LepRb selectively in POMC neurons increases susceptibility to the development of DIO. We propose a model where over-reactivity of the leptin-LepRb signaling system in arcuate neurons may play causal a role in development of diet-induced obesity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: