Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 250 papers

IgE glycans promote anti-IgE IgG autoantibodies that facilitate IgE serum clearance via Fc Receptors.

  • Kevin Plattner‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Recent studies have shown that IgE glycosylation significantly impacts the ability of IgE to bind to its high-affinity receptor FcεRI and exert effector functions. We have recently demonstrated that immunizing mice with IgE in a complex with an allergen leads to a protective, glycan-dependent anti-IgE response. However, to what extent the glycans on IgE determine the induction of those antibodies and how they facilitate serum clearance is unclear.Therefore, we investigated the role of glycan-specific anti-IgE IgG autoantibodies in regulating serum IgE levels and preventing systemic anaphylaxis by passive immunization.


Relationships between levels of serum IgE, cell-bound IgE, and IgE-receptors on peripheral blood cells in a pediatric population.

  • Eleonora Dehlink‎ et al.
  • PloS one‎
  • 2010‎

Elevated serum immunoglobulin (Ig) E is a diagnostic marker of immediate-type allergic reactions. We hypothesize that serum IgE does not necessarily reflect total body IgE because in vivo IgE can be bound to cell surface receptors such as FcepsilonRI and FcepsilonRII (CD23). The aim of this study was to analyze the relationships between levels of serum IgE, cell-bound IgE, and IgE-receptors on peripheral blood cells in a pediatric population.


Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells.

  • Daniel R Larson‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Upon cross-linking by antigen, the high affinity receptor for immunoglobulin E (IgE), FcepsilonRI, is phosphorylated by the Src family tyrosine kinase Lyn to initiate mast cell signaling, leading to degranulation. Using fluorescence correlation spectroscopy (FCS), we observe stimulation-dependent associations between fluorescently labeled IgE-FcepsilonRI and Lyn-EGFP on individual cells. We also simultaneously measure temporal variations in the lateral diffusion of these proteins. Antigen-stimulated interactions between these proteins detected subsequent to the initiation of receptor phosphorylation exhibit time-dependent changes, suggesting multiple associations between FcepsilonRI and Lyn-EGFP. During this period, we also observe a persistent decrease in Lyn-EGFP lateral diffusion that is dependent on Src family kinase activity. These stimulated interactions are not observed between FcepsilonRI and a chimeric EGFP that contains only the membrane-targeting sequence from Lyn. Our results reveal real-time interactions between Lyn and cross-linked FcepsilonRI implicated in downstream signaling events. They demonstrate the capacity of FCS cross-correlation analysis to investigate the mechanism of signaling-dependent protein-protein interactions in intact, living cells.


The two membrane isoforms of human IgE assemble into functionally distinct B cell antigen receptors.

  • F D Batista‎ et al.
  • The Journal of experimental medicine‎
  • 1996‎

The human C epsilon gene expresses two membrane IgE heavy chain mRNAs which differ in the sequence that encodes their extracellular membrane-proximal domain. In the long IgE isoform (mLIgE), this domain contains a stretch of 52 amino acids which are absent in the short variant (mSIgE). We have now generated B cell transfectoma cell lines that express these two isoforms and show that both types of mIgE form functional B cell antigen receptors (BCR). Both receptors associate with the Ig-alpha/Ig-beta heterodimer, as well as with protein kinases that are capable of phosphorylating this complex. Upon their cross-linking, both receptors can activate protein tyrosine kinases that phosphorylate the same substrate proteins. Both IgE receptors also associate with two novel proteins that do not bind to mIgM. Apart from these similarities, the two IgE-BCRs show several differences of which some are analogous to the differences between the IgM- and IgD-BCRs. First, the mSIgE is transported to the cell surface at a higher rate than the mLIgE. Second, the two IgE-BCRs associate with differently glycosylated Ig-alpha proteins, the mLIgE associates with the completely glycosylated form, whereas the mSIgE associates with an Ig-alpha glycoform that is partially sensitive to endoglycosidase H. Third, the kinetics of protein tyrosine phosphorylation induced by receptor cross-linking is significantly different for the two IgE-BCRs. Finally, cross-linking of the mSIgE-BCR leads to growth inhibition of the B cell transfectoma, whereas signaling through the mLIgE-BCR does not affect the cellular proliferation. These data show that the two human membrane IgE isoforms assemble into functionally distinct antigen receptors which can induce different cellular responses.


Defective Toll-Like Receptors Driven B Cell Response in Hyper IgE Syndrome Patients With STAT3 Mutations.

  • Ruolan Gong‎ et al.
  • Frontiers in pediatrics‎
  • 2021‎

Autosomal dominant hyper-IgE syndrome (AD-HIES) is a rare inherited primary immunodeficient disease (PIDs), which is caused by STAT3 gene mutations. Previous studies indicated a defective Toll-like receptor (TLR) 9-induced B cell response in AD-HIES patients, including proliferation, and IgG production. However, the other TLRs-mediated B cell responses in AD-HIES patients were not fully elucidated. In this study, we systematically studied the B cell response to TLRs signaling pathways in AD-HIES patients, including proliferation, activation, apoptosis, cytokine, and immunoglobulin production. Our results showed that the TLRs-induced B cell proliferation and activation was significantly impaired in AD-HIES patients. Besides, AD-HIES patients had defects in TLRs-induced B cell class switch, as well as IgG/IgM secretion and IL-10 production in B cells. Taken together, we first systematically reported the deficiency of TLRs driven B cell response in AD-HIES patients, which help to have a better understanding of the pathology of AD-HIES.


Chimeric Antigen Receptors Based on Low Affinity Mutants of FcεRI Re-direct T Cell Specificity to Cells Expressing Membrane IgE.

  • Dana E Ward‎ et al.
  • Frontiers in immunology‎
  • 2018‎

IgE is the key mediator of allergic responses. Omalizumab, an IgE-specific monoclonal antibody that depletes IgE, is effective for treating severe allergic asthma. The need for frequent administration of the expensive drug, however, limits its applications. Taking advantage of T cell memory, adoptive T cell therapy (ACT) targeting IgE-producing cells has the potential to achieve long-term suppression of IgE and relief of symptoms for severe allergic diseases. The transmembrane form of IgE (mIgE), which is present on all IgE-producing cells, serves as an excellent molecular target for ACT that employs chimeric antigen receptors (CARs). Here, we designed and tested CARs that use the extracellular domain of high affinity IgE receptor, FcεRIα, for mIgE recognition. When expressed on Jurkat T cells, FcεRIα-based CARs mediated robust responses in terms of CD69 upregulation to U266 myeloma cells expressing low levels of mIgE. FcεRIα-based CARs specifically recognized cells expressing mIgE, but not cells with secreted IgE captured through Fcε receptors. CAR+ Jurkat cells did not respond to LAD2 mast cells with secreted IgE bound through FcεRI or Ramos cells with secreted IgE bound through FcεRII. Co-culture of CAR+ Jurkat cells and LAD2 mast cells with IgE bound did not trigger LAD2 cell degranulation. The activity of CAR using wild type FcεRIα for mIgE binding was inhibited by the presence secreted IgE, which likely blocked CAR-mIgE interaction. The activities of CARs using low affinity mutants of FcεRIα, however, tolerated secreted IgE at relatively high concentrations. Moreover, primary human CD8+ T cells expressing a low affinity mutant CAR responded to U266 cells with INFγ production and cytotoxicity despite the presence of secreted IgE. The potency, specificity, and robustness of our CAR design, combined with repaid advances in the safety of ACT, hold promise for novel and highly effective cell-based therapies against severe allergic diseases.


Hypersensitivity reactions to asparaginase in mice are mediated by anti-asparaginase IgE and IgG and the immunoglobulin receptors FcεRI and FcγRIII.

  • Sanjay Rathod‎ et al.
  • Haematologica‎
  • 2019‎

Asparaginase is an important drug for the treatment of leukemias. However, anti-asparaginase antibodies often develop, which can decrease asparaginase drug levels and increase the risk of relapse. The aim of this study is to identify the immunoglobulin isotypes and receptors responsible for asparaginase hypersensitivities. Mice immunized with asparaginase developed anti-asparaginase IgG1 and IgE antibodies, and challenging the sensitized mice with asparaginase induced severe hypersensitivity reactions. Flow cytometry analysis indicated that macrophages/monocytes, neutrophils, and basophils bind asparaginase ex vivo through FcγRIII. In contrast, asparaginase binding to basophils was dependent on FcγRIII and IgE. Consistent with the asparaginase binding data, basophil activation by asparaginase occurred via both IgG/FcγRIII and IgE/FcεRI. Depleting >95% of B cells suppressed IgG but not IgE-dependent hypersensitivity, while depleting CD4+ T cells provided complete protection. Combined treatment with either anti-IgE mAb plus a platelet-activating factor receptor antagonist or anti-FcγRIII mAb plus a H1 receptor antagonist suppressed asparaginase hypersensitivity. The observations indicate that asparaginase hypersensitivity is mediated by antigen-specific IgG and/or IgE through the immunoglobulin receptors FcγRIII and FcεRI, respectively. Provided that these results apply to humans, they emphasize the importance of monitoring both IgE- and IgG-mediated asparaginase hypersensitivities in patients receiving this agent.


Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components.

  • P S Pyenta‎ et al.
  • Biophysical journal‎
  • 2001‎

To investigate the structural basis for membrane interactions that occur between Lyn tyrosine kinase and IgE-Fc(epsilon)RI or other components of lipid rafts, we prepared a green fluorescent protein analog of Lyn (PM-EGFP) and used cross-correlation analysis to quantify co-redistributions of aggregates that occur after IgE-Fc(epsilon)RI is cross-linked on the cell surface. PM-EGFP, which contains minimally the palmitoylation and myristoylation sites on Lyn, was compared with another inner leaflet probe, EGFP-GG, which contains a prenylation site and a polybasic sequence similar to K-ras. Confocal fluorescence microscopy was used to examine co-redistributions of these inner leaflet components with IgE-Fc(epsilon)RI and outer leaflet raft components, ganglioside GD1b and glycosylphosphotidylinositol-linked Thy-1, under conditions where the latter were cross-linked externally to form large patches at the cell surface. The cross-correlation analysis was developed and characterized with simulations representing cell surface distributions, and parameters from the cross-correlation curves, rho(o) (peak height) and A (peak area), were shown to be reliable measures of the extent of co-redistributed aggregates and their size. Cross-correlation analysis was then applied to quantify co-redistributions of the fluorescently labeled inner and outer leaflet components on RBL-2H3 cells. As visually observed and parameterized in this manner, PM-EGFP was found to co-redistribute with lipid rafts significantly more than EGFP-GG or an endogenous prenylated protein, Cdc42. These quantitative results are consistent with previous analyses of Lyn co-redistributions and support the hypothesis that the functionally important interaction of Lyn with cross-linked IgE- Fc(epsilon)RI is due to their mutual co-association with lipid rafts.


IgE Trimers Drive SPE-7 Cytokinergic Activity.

  • Heather J Bax‎ et al.
  • Scientific reports‎
  • 2017‎

Degranulation of mast cells and basophils, with release of agents of the allergic response, ensues when multivalent antigens bind to and cross-link the cells' receptor-bound IgE antibodies. A widely used commercial monoclonal IgE antibody, SPE-7 IgE from Sigma, was found to possess the radically anomalous property, termed "cytokinergic", of inducing basophil degranulation without the intervention of an antigen. We show here that the IgE monomer, freed of protein contaminants, is devoid of this activity, and that the source of the anomaly is a trace impurity, identified as a dissociation-resistant IgE trimer. Possible models for the formation of IgE trimers and the manner in which they cross-link cell surface receptors are suggested herein.


IgE-tailpiece associates with α-1-antitrypsin (A1AT) to protect IgE from proteolysis without compromising its ability to interact with FcεRI.

  • Phyllis M Quinn‎ et al.
  • Scientific reports‎
  • 2016‎

Several splice variants of IgE exist in human plasma, including a variant called IgE-tailpiece (IgE-tp) that differs from classical IgE by the replacement of two carboxy-terminal amino acids with eight novel residues that include an ultimate cysteine. To date, the role of the secreted IgE-tp isoform in human immunity is unknown. We show that levels of IgE-tp are raised in helminth-infected donors, and that both the classical form of IgE (IgE-c) and IgE-tp interact with polymers of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The association of IgE-tp with A1AT polymers in plasma protects the antibody from serine protease-mediated degradation, without affecting the functional interaction of IgE-tp with important receptors, including FcεR1. That polymers of A1AT protect IgE from degradation by helminth proteases may explain why these common and normally non-disease causing polymorphic variants of A1AT have been retained by natural selection. The observation that IgE can be complexed with polymeric forms of A1AT may therefore have important consequences for our understanding of the pathophysiology of pulmonary diseases that arise either as a consequence of A1AT-deficiency or through IgE-mediated type 1 hypersensitivity responses.


Structural and Physical Basis for Anti-IgE Therapy.

  • Jon D Wright‎ et al.
  • Scientific reports‎
  • 2015‎

Omalizumab, an anti-IgE antibody, used to treat severe allergic asthma and chronic idiopathic urticaria, binds to IgE in blood or membrane-bound on B lymphocytes but not to IgE bound to its high (FcεRI) or low (CD23) affinity receptor. Mutagenesis studies indicate overlapping FcεRI and omalizumab-binding sites in the Cε3 domain, but crystallographic studies show FcεRI and CD23-binding sites that are far apart, so how can omalizumab block IgE from binding both receptors? We report a 2.42-Å omalizumab-Fab structure, a docked IgE-Fc/omalizumab-Fab structure consistent with available experimental data, and the free energy contributions of IgE residues to binding omalizumab, CD23, and FcεRI. These results provide a structural and physical basis as to why omalizumab cannot bind receptor-bound IgE and why omalizumab-bound IgE cannot bind to CD23/FcεRI. They reveal the key IgE residues and their roles in binding omalizumab, CD23, and FcεRI.


CD23 provides a noninflammatory pathway for IgE-allergen complexes.

  • Paul Engeroff‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2020‎

Type I hypersensitivity is mediated by allergen-specific IgE, which sensitizes the high-affinity IgE receptor FcεRI on mast cells and basophils and drives allergic inflammation upon secondary allergen contact. CD23/FcεRII, the low-affinity receptor for IgE, is constitutively expressed on B cells and has been shown to regulate immune responses. Simultaneous binding of IgE to FcεRI and CD23 is blocked by reciprocal allosteric inhibition, suggesting that the 2 receptors exert distinct roles in IgE handling.


IgE binds asymmetrically to its B cell receptor CD23.

  • Balvinder Dhaliwal‎ et al.
  • Scientific reports‎
  • 2017‎

The antibody IgE plays a central role in allergic disease mechanisms. Its effector functions are controlled through interactions between the Fc region and two principal cell surface receptors FcεRI and CD23. The interaction with FcεRI is primarily responsible for allergic sensitization and the inflammatory response, while IgE binding to CD23 is involved in the regulation of IgE synthesis and allergen transcytosis. Here we present the crystal structure of a CD23/IgE-Fc complex and conduct isothermal titration calorimetric binding studies. Two lectin-like "head" domains of CD23 bind to IgE-Fc with affinities that differ by more than an order of magnitude, but the crystal structure reveals only one head bound to one of the two identical heavy-chains in the asymmetrically bent IgE-Fc. These results highlight the subtle interplay between receptor binding sites in IgE-Fc and their affinities, the understanding of which may be exploited for therapeutic intervention in allergic disease.


Compartmentalized IgE receptor-mediated signal transduction in living cells.

  • T P Stauffer‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Several receptor-mediated signal transduction pathways, including EGF and IgE receptor pathways, have been proposed to be spatially restricted to plasma membrane microdomains. However, the experimental evidence for signaling events in these microdomains is largely based on biochemical fractionation and immunocytochemical studies and only little is known about their spatial dynamics in living cells. Here we constructed green fluorescent protein-tagged SH2 domains to investigate where and when IgE receptor (FcepsilonRI)-mediated tyrosine phosphorylation occurs in living tumor mast cells. Strikingly, within minutes after antigen addition, tandem SH2 domains from Syk or PLC-gamma1 translocated from a uniform cytosolic distribution to punctuate plasma membrane microdomains. Colocalization experiments showed that the microdomains where tyrosine phosphorylation occurred were indistinguishable from those stained by cholera toxin B, a marker for glycosphingolipids. Competitive binding studies with coelectroporated unlabeled Syk, PLC-gamma1, and other SH2 domains selectively suppressed the induction of IgE receptor-mediated calcium signals as well as the binding of the fluorescent SH2 domains. This supports the hypothesis that PLC-gamma1 and Syk SH2 domains selectively bind to Syk and IgE receptors, respectively. Unlike the predicted prelocalization of EGF receptors to caveolae microdomains, fluorescently labeled IgE receptors were found to be uniformly distributed in the plasma membrane of unstimulated cells and only transiently translocated to glycosphingolipid rich microdomains after antigen addition. Thus, these in vivo studies support a plasma membrane signaling mechanism by which IgE receptors transiently associate with microdomains and induce the spatially restricted activation of Syk and PLC-gamma1.


Extracorporeal IgE Immunoadsorption in Allergic Asthma: Safety and Efficacy.

  • Christian Lupinek‎ et al.
  • EBioMedicine‎
  • 2017‎

Prevention of IgE-binding to cellular IgE-receptors by anti-IgE (Omalizumab) is clinically effective in allergic asthma, but limited by IgE threshold-levels. To overcome this limitation, we developed a single-use IgE immunoadsorber column (IgEnio). IgEnio is based on a recombinant, IgE-specific antibody fragment and can be used for the specific extracorporeal desorption of IgE.


IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions.

  • M Yamaguchi‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

The binding of immunoglobulin E (IgE) to high affinity IgE receptors (Fc(epsilon)RI) expressed on the surface of mast cells primes these cells to secrete, upon subsequent exposure to specific antigen, a panel of proinflammatory mediators, which includes cytokines that can also have immunoregulatory activities. This IgE- and antigen-specific mast cell activation and mediator production is thought to be critical to the pathogenesis of allergic disorders, such as anaphylaxis and asthma, and also contributes to host defense against parasites. We now report that exposure to IgE results in a striking (up to 32-fold) upregulation of surface expression of Fc(epsilon)RI on mouse mast cells in vitro or in vivo. Moreover, baseline levels of Fc(epsilon)RI expression on peritoneal mast cells from genetically IgE-deficient (IgE -/-) mice are dramatically reduced (by approximately 83%) compared with those on cells from the corresponding normal mice. In vitro studies indicate that the IgE-dependent upregulation of mouse mast cell Fc(epsilon)RI expression has two components: an early cycloheximide-insensitive phase, followed by a later and more sustained component that is highly sensitive to inhibition by cycloheximide. In turn, IgE-dependent upregulation of Fc(epsilon)RI expression significantly enhances the ability of mouse mast cells to release serotonin, interleukin-6 (IL-6), and IL-4 in response to challenge with IgE and specific antigen. The demonstration that IgE-dependent enhancement of mast cell Fc(epsilon)RI expression permits mast cells to respond to antigen challenge with increased production of proinflammatory and immunoregulatory mediators provides new insights into both the pathogenesis of allergic diseases and the regulation of protective host responses to parasites.


Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange.

  • Luke F Pennington‎ et al.
  • Nature communications‎
  • 2016‎

Omalizumab is a widely used therapeutic anti-IgE antibody. Here we report the crystal structure of the omalizumab-Fab in complex with an IgE-Fc fragment. This structure reveals the mechanism of omalizumab-mediated inhibition of IgE interactions with both high- and low-affinity IgE receptors, and explains why omalizumab selectively binds free IgE. The structure of the complex also provides mechanistic insight into a class of disruptive IgE inhibitors that accelerate the dissociation of the high-affinity IgE receptor from IgE. We use this structural data to generate a mutant IgE-Fc fragment that is resistant to omalizumab binding. Treatment with this omalizumab-resistant IgE-Fc fragment, in combination with omalizumab, promotes the exchange of cell-bound full-length IgE with omalizumab-resistant IgE-Fc fragments on human basophils. This combination treatment also blocks basophil activation more efficiently than either agent alone, providing a novel approach to probe regulatory mechanisms underlying IgE hypersensitivity with implications for therapeutic interventions.


Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome.

  • Vivien Béziat‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients' heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways.


Generation and Characterization of Native and Sialic Acid-Deficient IgE.

  • Alex J McCraw‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Efficient characterization of IgE antibodies and their glycan structures is required for understanding their function in allergy and in the emerging AllergoOncology field for antibody immunotherapy. We report the generation, glyco-profiling and functional analysis of native and sialic acid-deficient glyco-engineered human IgE. The antibodies produced from human embryonic kidney cells were purified via a human IgE class-specific affinity matrix and structural integrity was confirmed by SDS-PAGE and size-exclusion chromatography (SEC). Purified IgEs specific for the tumor-associated antigens Chondroitin Sulfate Proteoglycan 4 (CSPG4-IgE) and Human Epidermal Growth Factor Receptor 2 (HER2-IgE) were devoid of by-products such as free light chains. Using neuraminidase-A, we generated sialic acid-deficient CSPG4-IgE as example glyco-engineered antibody. Comparative glycan analyses of native and glyco-engineered IgEs by Hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC) indicated loss of sialic acid terminal residues and differential glycan profiles. Native and glyco-engineered CSPG4-IgEs recognized Fc receptors on the surface of human FcεRI-expressing rat basophilic leukemia RBL-SX38 cells, and of CD23/FcεRII-expressing human RPMI-8866 B-lymphocytes and bound to CSPG4-expressing A2058 human melanoma cells, confirming Fab-mediated recognition. When cross-linked on the cell surface, both IgEs triggered RBL-SX38 degranulation. We demonstrate efficient generation and functional competence of recombinant native and sialic acid-deficient IgEs.


Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion.

  • Christian Schwartz‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2014‎

Basophils orchestrate protection against reinfections with gastrointestinal helminths and ticks, but the underlying mechanisms remain elusive. We investigated the role of Fc receptors on basophils, the antibody isotypes IgG1 and IgE, and basophil-derived IL-4/IL-13 during challenge infections with Heligmosomoides polygyrus and Nippostrongylus brasiliensis. Using mixed bone marrow chimeras, we found that activating Fc receptors on basophils were required for protective immunity but not for regulation of basophil homeostasis. Furthermore, rapid worm expulsion was impaired in IgE-deficient but not in IgG1-deficient mice. Basophils promoted the recruitment of other effector cells into the small intestine and induced expression of the antihelminthic proteins resistin-like molecule β and mucin 5ac. Selective deletion of IL-4/IL-13 in basophils resulted in impaired worm expulsion. Collectively, our results indicate that IgE-mediated activation of basophils and the release of basophil-derived IL-4/IL-13 are critical steps in protective immunity against helminths. Therefore, development of effective vaccines against helminths should consider boosting the IL-4/IgE/basophil axis of the immune system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: