Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 737 papers

Neuronal expression of fibroblast growth factor receptors in zebrafish.

  • Patricia Rohs‎ et al.
  • Gene expression patterns : GEP‎
  • 2013‎

Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts.


Targeting fibroblast growth factor receptors to combat aggressive ependymoma.

  • Daniela Lötsch‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.


Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development.

  • Dena M Leerberg‎ et al.
  • Genetics‎
  • 2019‎

Fibroblast growth factor (Fgf) signaling regulates many processes during development. In most cases, one tissue layer secretes an Fgf ligand that binds and activates an Fgf receptor (Fgfr) expressed by a neighboring tissue. Although studies have identified the roles of specific Fgf ligands during development, less is known about the requirements for the receptors. We have generated null mutations in each of the five fgfr genes in zebrafish. Considering the diverse requirements for Fgf signaling throughout development, and that null mutations in the mouse Fgfr1 and Fgfr2 genes are embryonic lethal, it was surprising that all zebrafish homozygous mutants are viable and fertile, with no discernable embryonic defect. Instead, we find that multiple receptors are involved in coordinating most Fgf-dependent developmental processes. For example, mutations in the ligand fgf8a cause loss of the midbrain-hindbrain boundary, whereas, in the fgfr mutants, this phenotype is seen only in embryos that are triple mutant for fgfr1a;fgfr1b;fgfr2, but not in any single or double mutant combinations. We show that this apparent fgfr redundancy is also seen during the development of several other tissues, including posterior mesoderm, pectoral fins, viscerocranium, and neurocranium. These data are an essential step toward defining the specific Fgfrs that function with particular Fgf ligands to regulate important developmental processes in zebrafish.


Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in korean ossification of the posterior longitudinal ligament patients.

  • Jae-Kyun Jun‎ et al.
  • Journal of Korean Neurosurgical Society‎
  • 2012‎

The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of fibroblast growth factor (FGF) 2 gene and fibroblast growth factor receptor (FGFR) genes are associated with ossification of the posterior longitudinal ligament (OPLL).


Microvascularization and Expression of Fibroblast Growth Factor and Vascular Endothelial Growth Factor and Their Receptors in the Mare Oviduct.

  • Pedro Pinto-Bravo‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2021‎

The oviduct presents the ideal conditions for fertilization and early embryonic development. In this study, (i) vascularization pattern; (ii) microvascular density; (iii) transcripts of angiogenic factors (FGF1, FGF2, VEGF) and their receptors-FGFR1, FGFR2, KDR, respectively, and (iv) the relative protein abundance of those receptors were assessed in cyclic mares' oviducts. The oviductal artery, arterioles and their ramifications, viewed by means of vascular injection-corrosion, differed in the infundibulum, ampulla and isthmus. The isthmus, immunostained with CD31, presented the largest vascular area and the highest number of vascular structures in the follicular phase. Transcripts (qPCR) and relative protein abundance (Western blot) of angiogenic factors fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all oviduct portions throughout the estrous cycle. Upregulation of the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus and of FGF2 and KDR in the isthmus were noted. Furthermore, in the isthmus, the relative protein abundance of FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its three portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns.


Mouse genetics identifies unique and overlapping functions of fibroblast growth factor receptors in keratinocytes.

  • Michael Meyer‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double-knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.


Fibroblast growth factor receptors as novel therapeutic targets in SNF5-deleted malignant rhabdoid tumors.

  • Simon Wöhrle‎ et al.
  • PloS one‎
  • 2013‎

Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.


Fibroblast Growth Factor 2 Modulates Hypothalamic Pituitary Axis Activity and Anxiety Behavior Through Glucocorticoid Receptors.

  • Natalina Salmaso‎ et al.
  • Biological psychiatry‎
  • 2016‎

Despite strong evidence linking fibroblast growth factor 2 (FGF2) with anxiety and depression in both rodents and humans, the molecular mechanisms linking FGF2 with anxiety are not understood.


Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation.

  • Lucía Saucedo‎ et al.
  • PloS one‎
  • 2015‎

Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.


Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin-1 and their receptors at the porcine maternal-fetal interface.

  • Andrew K Edwards‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2011‎

Commercial swine breeds in North America undergo two waves of spontaneous fetal loss; one during peri-attachment and another during mid-gestation. Although an exact mechanism for this loss is not known, deficits in vasculature at the attachment sites appear to be a major cause. We hypothesized that a balance between pro-angiogenic and anti-angiogenic factors is needed at the maternal-fetal interface for successful conceptus development. Six selected members of the pro-angiogenic fibroblast growth factor (FGF) and platelet derived growth factor (PDGF) families and anti-angiogenic factor thrombospondin-1 (TSP-1) and its receptor CD36 were quantified and localized at the porcine maternal-fetal interface at early and midgestation time points.


Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis.

  • Jingxuan Yang‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal gammadelta T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal-epithelial interactions in skin homeostasis and disease.


Dissecting biological activities of fibroblast growth factor receptors by the coiled-coil-mediated oligomerization of FGF1.

  • Natalia Porebska‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Fibroblast growth factor receptors (FGFRs) are integral membrane proteins involved in various biological processes including proliferation, migration and apoptosis. There are a number of regulatory mechanisms of FGFR signaling, which tightly control the specificity and duration of transmitted signals. The effect of the FGFRs spatial distribution in the plasma membrane on receptor-dependent functions is still largely unknown. We have demonstrated that oligomerization of FGF1 with coiled-coil motifs largely improves FGF1 affinity for FGFRs and heparin. Set of developed FGF1 oligomers evoked prolonged activation of FGFR1 and receptor-downstream signaling pathways, as compared to the wild type FGF1. The majority of obtained oligomeric FGF1 variants showed increased stability, enhanced mitogenic activity and largely improved internalization via FGFR1-dependent endocytosis. Importantly, FGF1 oligomers with the highest oligomeric state exhibited reduced ability to stimulate FGFR-dependent glucose uptake, while at the same time remained hyperactive in the induction of cell proliferation. Our data implicate that oligomerization of FGF1 alters the biological activity of the FGF/GFR1 signaling system. Furthermore, developed FGF1 oligomers, due to improved stability and proliferative potential, can be applied in the regenerative medicine or as drug delivery vehicles in the ADC approach against FGFR1-overproducing cancers.


Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

  • Anna Szlachcic‎ et al.
  • Drug design, development and therapy‎
  • 2016‎

Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.


Curcumin upregulates transforming growth factor-β1, its receptors, and vascular endothelial growth factor expressions in an in vitro human gingival fibroblast wound healing model.

  • Auspreeya Rujirachotiwat‎ et al.
  • BMC oral health‎
  • 2021‎

Curcumin accelerates healing of oral wounds; however, the responsible mechanisms remain underexplored. Our hypothesis is curcumin regulates the expression of wound healing-related genes in human gingival fibroblasts (hGFs). This study investigated whether curcumin regulates transforming growth factor (TGF)-β1, type I TGF-β receptor (TGF-βRI), type II TGF-β receptor (TGF-βRII), and vascular endothelial growth factor (VEGF) expression in unwounded hGFs and an in vitro hGF wound healing model.


Fibroblast growth factor and endothelin-1 receptors mediate the response of human striatal precursor cells to hypoxia.

  • S Ambrosini‎ et al.
  • Neuroscience‎
  • 2015‎

Fetal striatal transplantation has emerged as a new therapeutic strategy in Huntington's disease (HD). Hypoxia is one of the microenvironmental stress conditions to which fetal tissue is exposed as soon as it is isolated and transplanted into the diseased host brain. Mechanisms that support neuroblast survival and replenishment of damaged cells within the HD brain in the hypoxic condition have yet to be fully elucidated. This study is aimed at investigating the molecular pathways associated with the hypoxic condition in human fetal striatal neuroblasts (human striatal precursor (HSP) cells), using the hypoxia-mimetic agent cobalt chloride (CoCl2). We analyzed the effect of CoCl2 on HSP cell proliferation and on the expression of hypoxia-related proteins, such as hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Moreover, we evaluated fibroblast growth factor 2 (FGF2; 50ng/ml) and endothelin-1 (ET-1; 100nM) proliferative/survival effects in HSP cells in normoxic and hypoxic conditions. Dose-response experiments using increasing concentrations of CoCl2 (50-750μM) showed that the HSP cell growth was unaffected after 24h, while it increased at 48h, with the maximal effect observed at 400μM. In contrast, cell survival was impaired at 72h. Hypoxic conditions determined HIF-1α protein accumulation and increased gene and protein expression of VEGF, while FGF2 and ET-1 significantly stimulated HSP cell proliferation both in normoxic and hypoxic conditions, thus counteracting the apoptotic CoCl2 effect at 72h. The incubation with selective receptor (FGFR1, endothelin receptor A (ETA) and endothelin receptor B (ETB)) inhibitors abolished the FGF2 and ET-1 neuroprotective effect. In particular, ET-1 stimulated HSP cell survival through ETA in normoxic conditions and through ETB during hypoxia. Accordingly, ETA expression was down-regulated, while ETB expression was up-regulated by CoCl2 treatment. Overall, our results support the idea that HSP cells possess the machinery for their adaptation to hypoxic conditions and that neurotrophic factors, such as FGF2 and ET-1, may sustain neurogenesis and long-term survival through complex receptor-mediated mechanisms.


Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

  • Allison L Speer‎ et al.
  • PloS one‎
  • 2012‎

The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.


Differential roles of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in the regulation of S115 breast cancer cell growth.

  • Kati M Tarkkonen‎ et al.
  • PloS one‎
  • 2012‎

Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.


Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration.

  • Marlena Typiak‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.


A designed fusion tag for soluble expression and selective separation of extracellular domains of fibroblast growth factor receptors.

  • Dae-Eun Cheong‎ et al.
  • Scientific reports‎
  • 2021‎

Fibroblast growth factor receptors (FGFRs) generate various transduction signals by interaction with fibroblast growth factors (FGFs) and are involved in various biological functions such as cell proliferation, migration, and differentiation. Malfunction of these proteins may lead to the development of various diseases, including cancer. Accordingly, FGFRs are considered an alternative therapeutic target for protein and/or gene therapy. However, the screening of antagonists or agonists of FGFRs is challenging due to their complex structural features associated with protein expression. Herein, we conducted the development of a protease-free cleavable tag (PFCT) for enhancing the solubility of difficult-to express protein by combining maltose-binding protein (MBP) and the C-terminal region of Npu intein. To validate the availability of the resulting tag for the functional production of extracellular domains of FGFRs (Ec_FGFRs), we performed fusion of PFCT with the N-terminus of Ec_FGFRs and analyzed the expression patterns. Almost all PFCT-Ec_FGFR fusion proteins were mainly detected in the soluble fraction except for Ec_FGFR4. Upon addition of the N-terminal region of Npu intein, approximately 85% of the PFCT-Ec_FGFRs was separated into PFCT and Ec_FGFR via intein-mediated cleavage. Additionally, the structural integrity of Ec_FGFR was confirmed by affinity purification using heparin column. Taken together, our study demonstrated that the PFCT could be used for soluble expression and selective separation of Ec_FGFRs.


Developmental and hormonal regulated gene expression of fibroblast growth factor 2 (FGF-2) and its receptors in porcine endometrium.

  • H Welter‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2004‎

This study examined the mRNA levels of the fibroblast growth factor 2 (FGF-2) and two of its receptors, FGFR1IIIc and FGFR2IIIc, at days 12 and 20 of the ovarian cycle (DC 12 and DC 20), days 1 and 12 of pregnancy (DP 1 and DP 12) as well as the influence of progesterone (P) and estradiolbenzoate (EB) on their expression in the endometrium of ovariectomized (ovx) gilts by real-time PCR. Proteins of FGF-2 and FGFR1 were immunolocalized. FGF-2 and FGFR2IIIc mRNAs were always found with a 5- to 30-fold higher absolute concentration compared to FGFR1IIIc. The latter transcript significantly declined between DP 1 and DP 12, whereas FGF-2 and FGFR2IIIc showed no significant changes at that time. FGF-2 transcription was greater at DC 20 than at DC 12, but significantly most transcripts were found in ovx gilts. EB induced a significant suppression of FGF-2 mRNA, an effect which was antagonized by P and even prevented by P+EB. FGFR1IIIc mRNA was significantly increased at DC 20, that of FGFR2IIIc at DC 12 displaying a 10 times higher absolute mRNA amount. Suppression of FGFR1IIIc mRNA by P was abolished by EB while P+EB attenuated this effect. FGFR2IIIc transcripts were equally restrained by P or EB while a combination of both slightly reduced such declines. Localization of FGF-2 and FGFR1 proteins in stromal, glandular and vascular compartments was effected by sex steroids. Both proteins were strongly expressed at DP 12 but not at DP 1. Summarized, differential temporal and spatial localization of FGF-2 and FGFR1 after response to sex steroids support a complex regulation of this ligand receptor system important for proliferation and differentiation of uterine cells including angiogenic processes. While FGFR1IIIc is presumed to be promoted by estradiol FGFR2IIIc appears to be dominated by progesterone implicating different biological importance for a functional endometrium.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: