Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,271 papers

Biophysical Evaluation of Rhesus Macaque Fc Gamma Receptors Reveals Similar IgG Fc Glycoform Preferences to Human Receptors.

  • Andrew R Crowley‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Rhesus macaques are a common non-human primate model used in the evaluation of human monoclonal antibodies, molecules whose effector functions depend on a conserved N-linked glycan in the Fc region. This carbohydrate is a target of glycoengineering efforts aimed at altering antibody effector function by modulating the affinity of Fcγ receptors. For example, a reduction in the overall core fucose content is one such strategy that can increase antibody-mediated cellular cytotoxicity by increasing Fc-FcγRIIIa affinity. While the position of the Fc glycan is conserved in macaques, differences in the frequency of glycoforms and the use of an alternate monosaccharide in sialylated glycan species add a degree of uncertainty to the testing of glycoengineered human antibodies in rhesus macaques. Using a panel of 16 human IgG1 glycovariants, we measured the affinities of macaque FcγRs for differing glycoforms via surface plasmon resonance. Our results suggest that macaques are a tractable species in which to test the effects of antibody glycoengineering.


Fc Gamma Receptors in the Hepatic Sinusoid.

  • Henrik Braathen‎ et al.
  • Comparative hepatology‎
  • 2004‎

No abstract available


Structural Aspects and Heterogeneity of Immunoglobulin Fc Receptors.

  • J C Unkeless‎ et al.
  • Advances in immunology‎
  • 1981‎

No abstract available


Dengue virus neutralization in cells expressing Fc gamma receptors.

  • Tanu Chawla‎ et al.
  • PloS one‎
  • 2013‎

Activating Fc gamma receptors (FcγRs) in hematopoietic cells serve to remove antibody-opsonized antigens, including dengue virus (DENV), from systemic circulation. While neutralizing antibody concentrations provide humoral immunity, cross-reactive or sub-neutralizing levels of antibody can result in antibody-dependent enhancement of DENV infection that increases overall viral burden. Recently, it has been suggested that the antibody levels needed for DENV neutralization differs when different FcγR is engaged. If this is true, the threshold titer used to infer immunity should be influenced by FcγR usage. Here, using cells that express both activating and inhibitory FcγRs, we show that the type of FcγR engaged during phagocytosis can influence the antibody concentration requirement for DENV neutralization. We demonstrate that phagocytosis through FcγRI requires significantly less antibody for complete DENV neutralization compared to FcγRIIA. Furthermore, when DENV is opsonized with sub-neutralizing levels of antibody, FcγRI-mediated phagocytosis resulted in significantly reduced DENV titers compared to FcγRIIA. However, while FcγRI may remove antibody-opsonized DENV more efficiently, this receptor is only preferentially engaged by clustering when neutralizing, but not sub-neutralizing antibody concentrations, were used. Collectively, our study demonstrates that activating FcγR usage may influence antibody titers needed for DENV neutralization.


Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors.

  • Andrea Bertolotti-Ciarlet‎ et al.
  • Molecular immunology‎
  • 2009‎

Methionine oxidation commonly occurs in the Fc fragment of therapeutic monoclonal antibodies; however, its impact on antibody function has not been addressed. Using surface plasmon resonance and cell binding assays, we examined the impact of methionine oxidation on the binding of two humanized IgG1 antibodies to Fc gamma receptors (Fc gammaR) and to the neonatal Fc receptor (Fc Rn). A panel of Fc gammaRs, including Fc gammaRI, Fc gammaRIIa-131H, Fc gammaRIIa-131R, Fc gammaRIIb/c, Fc gammaRIII ALF, Fc gammaRIII ALV, and Fc gammaRIIIb was evaluated. The binding of oxidized IgG1 molecules to individual receptors remained the same with the exception of Fc gammaRIIa where a subtle decrease in binding to the 131H allele was observed. In contrast, but in agreement with recently reported structural changes associated with Met oxidation, binding to Fc Rn was significantly affected. An increase in K(D) values at pH 6.0 was observed with increasing degree of oxidation, reaching several-fold greater value in highly oxidized samples. To our knowledge this is the first report demonstrating that chemical degradations in the constant region of monoclonal antibodies can impact their function and it highlights the importance of avoiding oxidation in therapeutic antibodies.


Fc receptors for immunoglobulins and their appearance during vertebrate evolution.

  • Srinivas Akula‎ et al.
  • PloS one‎
  • 2014‎

Receptors interacting with the constant domain of immunoglobulins (Igs) have a number of important functions in vertebrates. They facilitate phagocytosis by opsonization, are key components in antibody-dependent cellular cytotoxicity as well as activating cells to release granules. In mammals, four major types of classical Fc receptors (FcRs) for IgG have been identified, one high-affinity receptor for IgE, one for both IgM and IgA, one for IgM and one for IgA. All of these receptors are related in structure and all of them, except the IgA receptor, are found in primates on chromosome 1, indicating that they originate from a common ancestor by successive gene duplications. The number of Ig isotypes has increased gradually during vertebrate evolution and this increase has likely been accompanied by a similar increase in isotype-specific receptors. To test this hypothesis we have performed a detailed bioinformatics analysis of a panel of vertebrate genomes. The first components to appear are the poly-Ig receptors (PIGRs), receptors similar to the classic FcRs in mammals, so called FcRL receptors, and the FcR γ chain. These molecules are not found in cartilagous fish and may first appear within bony fishes, indicating a major step in Fc receptor evolution at the appearance of bony fish. In contrast, the receptor for IgA is only found in placental mammals, indicating a relatively late appearance. The IgM and IgA/M receptors are first observed in the monotremes, exemplified by the platypus, indicating an appearance during early mammalian evolution. Clearly identifiable classical receptors for IgG and IgE are found only in marsupials and placental mammals, but closely related receptors are found in the platypus, indicating a second major step in Fc receptor evolution during early mammalian evolution, involving the appearance of classical IgG and IgE receptors from FcRL molecules and IgM and IgA/M receptors from PIGR.


Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells.

  • Adisak Suwanichkul‎ et al.
  • Molecular immunology‎
  • 2013‎

The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.


Modulation of human polymorphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated functions by IFN-gamma and glucocorticoids.

  • K C Petroni‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 1988‎

Human polymorphonuclear neutrophils (PMN) normally express two distinct types of IgG Fc gamma R, the 40-kDa Fc gamma R referred to as Fc gamma RII and the low affinity 50- to 70-kDa Fc gamma R designated Fc gamma RIII. A third type of Fc gamma R, the 72-kDa high affinity receptor known as Fc gamma RI, is also detectable on PMN that have been activated by IFN-gamma. Using mAb that discriminate among the three known types of Fc gamma R, we examined the effects of IFN-gamma and glucocorticoids on human PMN Fc gamma R expression. We also studied effects of IFN-gamma and the synthetic glucocorticoid dexamethasone (DEX) on antibody-dependent cytotoxicity (ADCC) of chicken erythrocytes and phagocytosis of IgG-coated ox RBC by human PMN. In 20 donors studied, we found that treatment of PMN with 400 U/ml IFN-gamma induced a 9- to 20-fold increase in the number of Fc gamma RI sites per cell, and DEX inhibited this induction of Fc gamma RI by 39 to 73%. Similarly, DEX significantly reduced the IFN-gamma stimulation of ADCC and phagocytosis. IFN-gamma had no effect on expression of Fc gamma RII or Fc gamma RIII. Fc gamma RI and Fc gamma RII expression was unaltered by 24 h of treatment with DEX alone, but Fc gamma RIII expression was sometimes increased by about 20% on PMN cultured with DEX. Nevertheless, we found a small but significant inhibition of ADCC and phagocytosis by 200 nM DEX. Our results indicate that Fc gamma RI plays a major but not exclusive role in the regulation of ADCC and phagocytosis by IFN-gamma and DEX.


Human and mouse albumin bind their respective neonatal Fc receptors differently.

  • Jeannette Nilsen‎ et al.
  • Scientific reports‎
  • 2018‎

Albumin has a serum half-life of three weeks in humans and is utilized to extend the serum persistence of drugs that are genetically fused or conjugated directly to albumin or albumin-binding molecules. Responsible for the long half-life is FcRn that protects albumin from intracellular degradation. An in-depth understanding of how FcRn binds albumin across species is of importance for design and evaluation of albumin-based therapeutics. Albumin consists of three homologous domains where domain I and domain III of human albumin are crucial for binding to human FcRn. Here, we show that swapping of two loops in domain I or the whole domain with the corresponding sequence in mouse albumin results in reduced binding to human FcRn. In contrast, humanizing domain I of mouse albumin improves binding. We reveal that domain I of mouse albumin plays a minor role in the interaction with the mouse and human receptors, as domain III on its own binds with similar affinity as full-length mouse albumin. Further, we show that P573 in domain III of mouse albumin is required for strong receptor binding. Our study highlights distinct differences in structural requirements for the interactions between mouse and human albumin with their respective receptor, which should be taken into consideration in design of albumin-based drugs and evaluation in mouse models.


Impact of IgG1 N-glycosylation on their interaction with Fc gamma receptors.

  • Florian Cambay‎ et al.
  • Current research in immunology‎
  • 2020‎

The effector functions of the IgGs are modulated by the N-glycosylation of their Fc region. Particularly, the absence of core fucosylation is known to increase the affinity of IgG1s for the Fcγ receptor IIIa expressed by immune cells, in turn translating in an improvement in the antibody-dependent cellular cytotoxicity. However, the impact of galactosylation and sialylation is still debated in the literature. In this study, we have investigated the influence of high and low levels of core fucosylation, terminal galactosylation and terminal α2,6-sialylation of the Fc N-glycans of trastuzumab on its affinity for the FcγRIIIa. A large panel of antibody glycoforms (i.e., highly α2,6-sialylated or galactosylated IgG1s, with high or low levels of core fucosylation) were generated and characterized, while their interactions with the FcγRs were analysed by a robust surface plasmon resonance-based assay as well as in a cell-based reporter bioassay. Overall, IgG1 glycoforms with reduced fucosylation display a stronger affinity for the FcγRIIIa. In addition, fucosylation, and the presence of terminal galactose and sialic acids are shown to increase the affinity for the FcγRIIIa as compared to the agalactosylated forms. These observations perfectly translate in the response observed in our reporter bioassay.


Electrophoretic mobility of peripheral non-B human Fc gamma-receptors bearing lymphocytes.

  • P Chollet‎ et al.
  • Biomedicine / [publiee pour l'A.A.I.C.I.G.]‎
  • 1980‎

The electrophoretic mobilities of separated "null" lymphocytes and of null and T cells bearing receptors for the fragment of immunoglobulins (Fc) portion of IgG have been studied in normal human blood. The data have been compared with those of other circulating subsets and with more conventional marker techniques. A large proportion of B cells was removed by nylon wool adherence. Further purification of the effluent cells separated 3 non-B populations using the property of sheep's red blood cells to form 2 types of rosettes with T cells on the basis of their relative affinity: "active" rosettes, and low affinity E-rosettes. A population of "null" cells was obtained which was effluent of the nylon wool column and non rosette-forming cells with SRBC (E-RFC). The average purity of this population was 85%; it was found to contain an increased proportion of rosette-forming cells with IgG coated erythrocytes (EA-IgG RFC) (41.3 +/- 10.4% vs. 11.9 +/- 3.8% in the total population) and exhibited high spontaneous incorporation of thymidine but low response to mitogens. The "null" cell population and its erythrocyte-antibody complex-rosette forming cells (EA-RFC) exhibited a defined electrophoretic mobility, centered between 1.05 and 1.15 micrometer. sec-1. v-1. cm in NaCl 0.145 M. The T populations, defined as ERFC, possessed different electrophoretic mobilities, and contained different proportions of Fc gamma receptor-bearing cells. Possessing an e. m. generally greater than 1.15 micrometer. sec-1. v-1. cm., high affinity "active" rosettes did not appear to contain EA-RFC, while the low affinity ERFC contained 18% (8 to 33) EA (IgG) RFC, and had an e.m. comprised between 1.00 and 1.15 micrometer. sec-1. v-1. cm. The presence of antibody-dependent cellular cytotoxicity was found to correlate with EA-RFC: mainly in EA-RFC of the "null" cells, but also to a lesser extent in EA-RFC of the low affinity ERFC. In normal human blood, these non-B Fc gamma receptor bearing cells appeared to possess a comparable electrophoretic mobility centered between 1.05 and 1.15 micrometer. sec-1. v-1. cm. in the "null" and low affinity ERFC subsets.


Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy.

  • Mahesh Jonnalagadda‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2015‎

The success of adoptive therapy using chimeric antigen receptor (CAR)-expressing T cells partly depends on optimal CAR design. CARs frequently incorporate a spacer/linker region based on the constant region of either IgG1 or IgG4 to connect extracellular ligand-binding with intracellular signaling domains. Here, we evaluated the potential for the IgG4-Fc linker to result in off-target interactions with Fc gamma receptors (FcγRs). As proof-of-principle, we focused on a CD19-specific scFv-IgG4-CD28-zeta CAR and found that, in contrast to CAR-negative cells, CAR+ T cells bound soluble FcγRs in vitro and did not engraft in NSG mice. We hypothesized that mutations to avoid FcγR binding would improve CAR+ T cell engraftment and antitumor efficacy. Thus, we generated CD19-specific CARs with IgG4-Fc spacers that had either been mutated at two sites (L235E; N297Q) within the CH2 region (CD19R(EQ)) or incorporated a CH2 deletion (CD19Rch2Δ). These mutations reduced binding to soluble FcγRs without altering the ability of the CAR to mediate antigen-specific lysis. Importantly, CD19R(EQ) and CD19Rch2Δ T cells exhibited improved persistence and more potent CD19-specific antilymphoma efficacy in NSG mice. Together, these studies suggest that optimal CAR function may require the elimination of cellular FcγR interactions to improve T cell persistence and antitumor responses.


IgG Suppresses Antibody Responses in Mice Lacking C1q, C3, Complement Receptors 1 and 2, or IgG Fc-Receptors.

  • Joakim J E Bergström‎ et al.
  • PloS one‎
  • 2015‎

Antigen-specific IgG antibodies, passively administered to mice or humans together with large particulate antigens like erythrocytes, can completely suppress the antibody response against the antigen. This is used clinically in Rhesus prophylaxis, where administration of IgG anti-RhD prevents RhD-negative women from becoming immunized against RhD-positive fetal erythrocytes aquired transplacentally. The mechanisms by which IgG suppresses antibody responses are poorly understood. We have here addressed whether complement or Fc-receptors for IgG (FcγRs) are required for IgG-mediated suppression. IgG, specific for sheep red blood cells (SRBC), was administered to mice together with SRBC and the antibody responses analyzed. IgG was able to suppress early IgM- as well as longterm IgG-responses in wildtype mice equally well as in mice lacking FcγRIIB (FcγRIIB knockout mice) or FcγRI, III, and IV (FcRγ knockout mice). Moreover, IgG was able to suppress early IgM responses equally well in mice lacking C1q (C1qA knockout mice), C3 (C3 knockout mice), or complement receptors 1 and 2 (Cr2 knockout mice) as in wildtype mice. Owing to the previously described severely impaired IgG responses in the complement deficient mice, it was difficult to assess whether passively administered IgG further decreased their IgG response. In conclusion, Fc-receptor binding or complement-activation by IgG does not seem to be required for its ability to suppress antibody responses to xenogeneic erythrocytes.


Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation.

  • Patricia E Zerra‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.


IgG fc receptors provide an alternative infection route for murine gamma-herpesvirus-68.

  • Gustavo T Rosa‎ et al.
  • PloS one‎
  • 2007‎

Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor(+) cells.


Engineering the interactions between a plant-produced HIV antibody and human Fc receptors.

  • Szymon Stelter‎ et al.
  • Plant biotechnology journal‎
  • 2020‎

Plants can provide a cost-effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3-fucose and β1,2-xylose residues and glycans extended with terminal β1,4-galactose. Surface plasmon resonance-based assays were established for kinetic/affinity evaluation of antibody-FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant-made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell-derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant-produced antibodies.


A CD19/Fc fusion protein for detection of anti-CD19 chimeric antigen receptors.

  • Satiro N De Oliveira‎ et al.
  • Journal of translational medicine‎
  • 2013‎

Chimeric Antigen Receptors (CARs) consist of the antigen-recognition portion of a monoclonal antibody fused to an intracellular signaling domain capable of activating T-cells. CARs displayed on the surface of transduced cells perform non-MHC-restricted antigen recognition and activating intracellular signaling pathways for induction of target cytolysis, cytokine secretion and proliferation. Clinical trials are in progress assessing the use of mature T-lymphocytes transduced with CARs targeting CD19 antigen to treat B-lineage malignancies. CD19 is an attractive target for immunotherapy because of its consistent and specific expression in most of the stages of maturation and malignancies of B-lymphocyte origin, but not on hematopoietic stem cells. Antibodies against the extracellular domain of the CAR molecule (anti-Fab, Fc or idiotype) have been used for detection of CAR expression in research and clinical samples by flow cytometry, but may need development for each construct and present significant background in samples from xenograft models.


Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors.

  • Matthew E Cohen‎ et al.
  • PloS one‎
  • 2011‎

Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.


Molecular Dynamics Simulations Reveal Interactions of an IgG1 Antibody With Selected Fc Receptors.

  • Sebastjan Kralj‎ et al.
  • Frontiers in chemistry‎
  • 2021‎

In a survey of novel interactions between an IgG1 antibody and different Fcγ receptors (FcγR), molecular dynamics simulations were performed of interactions of monoclonal antibody involved complexes with FcγRs. Free energy simulations were also performed of isolated wild-type and substituted Fc regions bound to FcγRs with the aim of assessing their relative binding affinities. Two different free energy calculation methods, Molecular Mechanical/Generalized Born Molecular Volume (MM/GBMV) and Bennett Acceptance Ratio (BAR), were used to evaluate the known effector substitution G236A that is known to selectively increase antibody dependent cellular phagocytosis. The obtained results for the MM/GBMV binding affinity between different FcγRs are in good agreement with previous experiments, and those obtained using the BAR method for the complete antibody and the Fc-FcγR simulations show increased affinity across all FcγRs when binding to the substituted antibody. The FcγRIIa, a key determinant of antibody agonistic efficacy, shows a 10-fold increase in binding affinity, which is also consistent with the published experimental results. Novel interactions between the Fab region of the antibody and the FcγRs were discovered with this in silico approach, and provide insights into the antibody-FcγR binding mechanism and show promise for future improvements of therapeutic antibodies for preclinical studies of biological drugs.


QTY Code-designed Water-soluble Fc-fusion Cytokine Receptors Bind to their Respective Ligands.

  • Shilei Hao‎ et al.
  • QRB discovery‎
  • 2020‎

Cytokine release syndrome (CRS), or 'cytokine storm', is the leading side effect during chimeric antigen receptor (CAR)-T therapy that is potentially life-threatening. It also plays a critical role in viral infections such as Coronavirus Disease 2019 (COVID-19). Therefore, efficient removal of excessive cytokines is essential for treatment. We previously reported a novel protein modification tool called the QTY code, through which hydrophobic amino acids Leu, Ile, Val and Phe are replaced by Gln (Q), Thr (T) and Tyr (Y). Thus, the functional detergent-free equivalents of membrane proteins can be designed. Here, we report the application of the QTY code on six variants of cytokine receptors, including interleukin receptors IL4Rα and IL10Rα, chemokine receptors CCR9 and CXCR2, as well as interferon receptors IFNγR1 and IFNλR1. QTY-variant cytokine receptors exhibit physiological properties similar to those of native receptors without the presence of hydrophobic segments. The receptors were fused to the Fc region of immunoglobulin G (IgG) protein to form an antibody-like structure. These QTY code-designed Fc-fusion receptors were expressed in Escherichia coli and purified. The resulting water-soluble fusion receptors bind to their respective ligands with K d values affinity similar to isolated native receptors. Our cytokine receptor-Fc-fusion proteins potentially serve as an antibody-like decoy to dampen the excessive cytokine levels associated with CRS and COVID-19 infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: