Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,920 papers

Evolution of Class I cytokine receptors.

  • Clifford Liongue‎ et al.
  • BMC evolutionary biology‎
  • 2007‎

The Class I cytokine receptors have a wide range of actions, including a major role in the development and function of immune and blood cells. However, the evolution of the genes encoding them remains poorly understood. To address this we have used bioinformatics to analyze the Class I receptor repertoire in sea squirt (Ciona intestinalis) and zebrafish (Danio rerio).


Regulation of cytokine signaling through direct interaction between cytokine receptors and the ATG16L1 WD40 domain.

  • Inmaculada Serramito-Gómez‎ et al.
  • Nature communications‎
  • 2020‎

ATG16L1, an autophagy mediator that specifies the site of LC3 lipidation, includes a C-terminal domain formed by 7 WD40-type repeats (WD40 domain, WDD), the function of which is unclear. Here we show that the WDD interacts with the intracellular domain of cytokine receptors to regulate their signaling output in response to ligand stimulation. Using a refined version of a previously described WDD-binding amino acid motif, here we show that this element is present in the intracellular domain of cytokine receptors. Two of these receptors, IL-10RB and IL-2Rγ, recognize the WDD through the motif and exhibit WDD-dependent LC3 lipidation activity. IL-10 promotes IL-10RB/ATG16L1 interaction through the WDD, and IL-10 signaling is suboptimal in cells lacking the WDD owing to delayed endocytosis and inefficient early trafficking of IL10/IL-10R complexes. Our data reveal WDD-dependent roles of ATG16L1 in the regulation of cytokine receptor trafficking and signaling, and provide a WDD-binding motif that might be used to identify additional WDD activators.


Synthetic cytokine receptors transmit biological signals using artificial ligands.

  • Erika Engelowski‎ et al.
  • Nature communications‎
  • 2018‎

Cytokine-induced signal transduction is executed by natural biological switches, which among many others control immune-related processes. Here, we show that synthetic cytokine receptors (SyCyRs) can induce cytokine signaling using non-physiological ligands. High-affinity GFP- and mCherry-nanobodies were fused to transmembrane and intracellular domains of the IL-6/IL-11 and IL-23 cytokine receptors gp130 and IL-12Rβ1/IL-23R, respectively. Homo- and heterodimeric GFP:mCherry fusion proteins as synthetic cytokine-like ligands were able to induce canonical signaling in vitro and in vivo. Using SyCyR ligands, we show that IL-23 receptor homodimerization results in its activation and IL-23-like signal transduction. Moreover, trimeric receptor assembly induces trans-phosphorylation among cytokine receptors with associated Janus kinases. The SyCyR technology allows biochemical analyses of transmembrane receptor signaling in vitro and in vivo, cell-specific activation through SyCyR ligands using transgenic animals and possible therapeutic regimes involving non-physiological targets during immunotherapy.


Quantification of membrane-bound cytokine receptors by calibrated flow cytometry.

  • Niloufarsadat Miri‎ et al.
  • STAR protocols‎
  • 2023‎

We present a protocol for quantifying the expression of the receptor gp130 using a calibrated flow cytometric approach. We describe pitfalls for receptor quantification such as titration of primary antibodies and standardizing cell culture. Receptors are stained with primary antibodies and fluorophore-coupled secondary antibodies. Beads covered with defined numbers of immunoglobulin G stained with fluorophore-coupled secondary antibodies serve as calibrators. In this way, the fluorescence intensity of cells is converted to the number of receptors on the cell surface. For complete details on the use and execution of this protocol, please refer to Reeh et al. (2019).1.


Distinct Assemblies of Heterodimeric Cytokine Receptors Govern Stemness Programs in Leukemia.

  • Winnie L Kan‎ et al.
  • Cancer discovery‎
  • 2023‎

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/βc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/βc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/βc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance.


A Multitarget Therapeutic Peptide Derived From Cytokine Receptors Based on in Silico Analysis Alleviates Cytokine-Stimulated Inflammation.

  • Chun-Chun Chang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Septicemia is a severe inflammatory response caused by the invasion of foreign pathogens. Severe sepsis-induced shock and multiple organ failure are the two main causes of patient death. The overexpression of many proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, is closely related to severe sepsis. Although the treatment of sepsis has been subject to many major breakthroughs of late, the treatment of patients with septic shock is still accompanied by a high mortality rate. In our previous research, we used computer simulations to design the multifunctional peptide KCF18 that can bind to TNF-α, IL-1β, and IL-6 based on the binding regions of receptors and proinflammatory cytokines. In this study, proinflammatory cytokines were used to stimulate human monocytes to trigger an inflammatory response, and the anti-inflammatory ability of the multifunctional KCF18 peptide was further investigated. Cell experiments demonstrated that KCF18 significantly reduced the binding of proinflammatory cytokines to their cognate receptors and inhibited the mRNA and protein expressions of TNF-α, IL-1β, and IL-6. It could also reduce the expression of reactive oxygen species induced by cytokines in human monocytes. KCF18 could effectively decrease the p65 nucleus translocation induced by cytokines, and a mice endotoxemia experiment demonstrated that KCF18 could reduce the expression of IL-6 and the increase of white blood cells in the blood stimulated by lipopolysaccharides. According to our study of tissue sections, KCF18 alleviated liver inflammation. By reducing the release of cytokines in plasma and directly affecting vascular cells, KCF18 is believed to significantly reduce the risk of vascular inflammation.


Orchestration of signaling by structural disorder in class 1 cytokine receptors.

  • Pernille Seiffert‎ et al.
  • Cell communication and signaling : CCS‎
  • 2020‎

Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood.


Jak2 is essential for signaling through a variety of cytokine receptors.

  • E Parganas‎ et al.
  • Cell‎
  • 1998‎

A variety of cytokines activate receptor-associated members of the Janus family of protein tyrosine kinases (Jaks). To assess the role of Jak2, we have derived Jak2-deficient mice. The mutation causes an embryonic lethality due to the absence of definitive erythropoiesis. Fetal liver myeloid progenitors, although present based on the expression of lineage specific markers, fail to respond to erythropoietin, thrombopoietin, interleukin-3 (IL-3), or granulocyte/macrophage colony-stimulating factor. In contrast, the response to granulocyte specific colony-stimulating factor is unaffected. Jak2-deficient fibroblasts failed to respond to interferon gamma (IFNgamma), although the responses to IFNalpha/beta and IL-6 were unaffected. Lastly, reconstitution experiments demonstrate that Jak2 is not required for the generation of lymphoid progenitors, their amplification, or functional differentiation. Therefore, Jak2 plays a critical, nonredundant role in the function of a specific group of cytokines receptors.


Enhancing CAR T-cell Therapy Using Fab-Based Constitutively Heterodimeric Cytokine Receptors.

  • Matteo Righi‎ et al.
  • Cancer immunology research‎
  • 2023‎

Adoptive T-cell therapy aims to achieve lasting tumor clearance, requiring enhanced engraftment and survival of the immune cells. Cytokines are paramount modulators of T-cell survival and proliferation. Cytokine receptors signal via ligand-induced dimerization, and this principle has been hijacked utilizing nonnative dimerization domains. A major limitation of current technologies resides in the absence of a module that recapitulates the natural cytokine receptor heterodimeric pairing. To circumvent this, we created a new engineered cytokine receptor able to constitutively recreate receptor-heterodimer utilizing the heterodimerization domain derived from the IgG1 antibody (dFab_CCR). We found that the signal delivered by the dFab_CCR-IL2 proficiently mimicked the cytokine receptor heterodimerization, with transcriptomic signatures like those obtained by activation of the native IL2 receptor. Moreover, we found that this dimerization structure was agnostic, efficiently activating signaling through four cytokine receptor families. Using a combination of in vivo and in vitro screening approaches, we characterized a library of 18 dFab_CCRs coexpressed with a clinically relevant solid tumor-specific GD2-specific chimeric antigen receptor (CAR). Based on this characterization, we suggest that the coexpression of either the common β-chain GMCSF or the IL18 dFab_CCRs is optimal to improve CAR T-cell expansion, engraftment, and efficacy. Our results demonstrate how Fab dimerization is efficient and versatile in recapitulating a cytokine receptor heterodimerization signal. This module could be applied for the enhancement of adoptive T-cell therapies, as well as therapies based on other immune cell types. Furthermore, these results provide a choice of cytokine signal to incorporate with adoptive T-cell therapies.


The Expression of Cytokine Profiles and Related Receptors in Idiopathic Inflammatory Myopathies.

  • Junyu Zhou‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Cytokines play a vital role in the pathogenesis of idiopathic inflammatory myopathies (IIMs). Here, we investigated the expression of serum cytokine profiles in untreated IIMs and their correlations with clinical indicators, and further studied the expression of related cytokines receptors in IIMs. Methods: The Human 48-Plex Luminex assay for cytokines was performed in the serum of IIMs, including 93 untreated and 18 follow-up (39 samples) patients, and 32 healthy controls (HC). Mann-Whitney U test with bonferroni adjusted was used to identify the differentially expressed cytokines among groups. Celltalker software was used to identify the receptors of differentially expressed cytokines. The expression of receptors was further validated by published GEO datasets (muscle, blood and skin), RT-qPCR, western blot and flow cytometry. Results: The serum levels of Eotaxin, IL7, IL18, IP10, MCP1, MCSF, MIG and SCGFβ were elevated in the 93 untreated patients. Except for IL7, all other cytokines were decreased after treatment and their levels were positively correlated with clinical indices such as LDH, ESR, CRP, ALT, IgA, AST and IgG while negatively correlated with albumin and MMT8. According to the serum myositis-specific antibodies (MSAs), patients were classified into three groups: anti-ARS (Jo-1, OJ, EJ, PL7, PL12), anti-MDA5 positive, and anti-TIF1γ positive. Compared with HC, the levels of IP10 and MIG were increased in three groups. Moreover, IL18 and MSCF were increased in anti-ARS patients, and CTACK, Eotaxin, IL1Rα, IL7, IL18, MCP1, MCP3, MCSF and SCGFβ were elevated in anti-MDA5 patients. Twenty receptors of the 8 differentially expressed cytokines were matched by celltalker software, among them, IL18R1 and CCR1 were up-regulated in blood, muscle and skin of IIMs from the analysis of GEO published datasets. RT-qPCR and western blot further validated IL18R1 was upregulated in the muscle tissues of dermatomyositis. The number of IL18R1+CD4+ cells was increased while IL18R1+CD8+ cells was decreased in peripheral blood of anti-MDA5 patients. Conclusion: This study showed that cytokine profiles were significantly changed in IIMs, and different MSA groups had unique cytokine expression patterns. The levels of some cytokine were correlated with clinical indices. The IL18 receptor IL18R1 might play important roles in IIMs.


QTY Code-designed Water-soluble Fc-fusion Cytokine Receptors Bind to their Respective Ligands.

  • Shilei Hao‎ et al.
  • QRB discovery‎
  • 2020‎

Cytokine release syndrome (CRS), or 'cytokine storm', is the leading side effect during chimeric antigen receptor (CAR)-T therapy that is potentially life-threatening. It also plays a critical role in viral infections such as Coronavirus Disease 2019 (COVID-19). Therefore, efficient removal of excessive cytokines is essential for treatment. We previously reported a novel protein modification tool called the QTY code, through which hydrophobic amino acids Leu, Ile, Val and Phe are replaced by Gln (Q), Thr (T) and Tyr (Y). Thus, the functional detergent-free equivalents of membrane proteins can be designed. Here, we report the application of the QTY code on six variants of cytokine receptors, including interleukin receptors IL4Rα and IL10Rα, chemokine receptors CCR9 and CXCR2, as well as interferon receptors IFNγR1 and IFNλR1. QTY-variant cytokine receptors exhibit physiological properties similar to those of native receptors without the presence of hydrophobic segments. The receptors were fused to the Fc region of immunoglobulin G (IgG) protein to form an antibody-like structure. These QTY code-designed Fc-fusion receptors were expressed in Escherichia coli and purified. The resulting water-soluble fusion receptors bind to their respective ligands with K d values affinity similar to isolated native receptors. Our cytokine receptor-Fc-fusion proteins potentially serve as an antibody-like decoy to dampen the excessive cytokine levels associated with CRS and COVID-19 infection.


Pro- and anti-apoptotic fate decisions induced by di- and trimeric synthetic cytokine receptors.

  • Sofie Mossner‎ et al.
  • iScience‎
  • 2021‎

Synthetic strategies to activate cytokine receptors so far only address standard dimeric cytokine receptor assemblies. The 19 ligands of the tumor necrosis factor superfamily (TNFSF), however, form noncovalent trimers and receptor trimerization is considered to be essential for receptor activation. Synthetic TNFR1, TNFR2, and Fas/CD95 receptors were activated by synthetic trimeric ligands which induced NF-κB signaling or Caspase-induced apoptosis. Albeit dimeric receptor activation did not induce synthetic TNFR1 and TNFR2 signaling, dimeric FasL induced extenuated apoptosis. Simultaneous integration of dimeric Interleukin (IL-)6 receptor gp130 and trimeric Fas as synthetic cytokine receptors in one cell enabled binary cell fate decisions, gp130-mediated proliferation or Fas-mediated apoptosis. In summary, our modular fully synthetic cytokine signaling system allows precisely orchestrated cellular responses to selectively induce pro- and anti-apoptotic signaling via canonical dimeric receptors of the IL-6 family and non-canonical trimeric receptor complexes of the TNF superfamily.


Role of scavenger receptors in silica nanoparticle-induced cytokine responses in bronchial epithelial cells.

  • Magne Refsnes‎ et al.
  • Toxicology letters‎
  • 2021‎

A major challenge in nanoparticle (NP) research is to elucidate how NPs activate initial targets in cells, leading to cytotoxicity and inflammation. We have previously shown that silica (Si)NPs induce pro-inflammatory responses in bronchial epithelial cells (BEAS-2B) via mechanisms involving transforming growth factor (TGF)-α release, and activation of MAP-kinase p38 and JNK besides NF-κB (p65). In the present study, the roles of scavenger receptors (SRs) in SiNP-induced cytokine responses in BEAS-2B cells were examined by siRNA silencing. Cells exposed to Si10 and Si50 (nominal sizes 10 and 50 nm) showed marked interleukin (IL)-6, CXCL8, IL-1α, IL-1β responses. Transient knockdown of SR-B1, LOX-1 and CXCL16 reduced the Si10- and Si50-induced cytokine responses, to a different magnitude dependent on the particle size, SR and cytokine. Si10-induced TGF-α responses were also markedly reduced by knockdown of SR-B1 and CXCL16. Furthermore, the role of SR-B1 in Si10-induced phosphorylations of p65 and MAP-kinases p38 and JNK were examined, and no significant reductions were observed upon knockdown of SR-B1. In conclusion, LOX-1 and CXCL16 and especially SR-B1 seem to have important roles in mediating cytokine responses and TGF-α release due to SiNP exposure in BEAS-2B cells, without a down-stream role of MAP-kinase and NF-κB.


Comparative Analyses of the Conformational Dynamics Between the Soluble and Membrane-Bound Cytokine Receptors.

  • Chao-Yie Yang‎
  • Scientific reports‎
  • 2020‎

Cytokine receptors receive extracellular cues by binding with cytokines to transduce a signaling cascade leading to gene transcription in cells. Their soluble isoforms, functioning as decoy receptors, contain only the ectodomain. Whether the ectodomains of cytokine receptors at the membrane exhibit different conformational dynamics from their soluble forms is unknown. Using Stimulation-2 (ST2) as an example, we performed microsecond molecular dynamics (MD) simulations to study the conformational dynamics of the soluble and the membrane-bound ST2 (sST2 and ST2). Combined use of accelerated and conventional MD simulations enabled extensive sampling of the conformational space of sST2 for comparison with ST2. Using the interdomain loop conformation as the reaction coordinate, we built a Markov State Model to determine the slowest implied timescale of the conformational transition in sST2 and ST2. We found that the ectodomain of ST2 undergoes slower conformational relaxation but exhibits a faster rate of conformational transition in a more restricted conformational space than sST2. Analyses of the relaxed conformations of ST2 further suggest important contributions of interdomain salt-bridge interactions to the stabilization of different ST2 conformations. Our study elucidates differential conformational properties between sST2 and ST2 that may be exploited for devising strategies to selectively target each isoform.


Neuronal nicotinic alpha7 receptors modulate inflammatory cytokine production in the skin following ultraviolet radiation.

  • Amber V Osborne-Hereford‎ et al.
  • Journal of neuroimmunology‎
  • 2008‎

The anti-inflammatory effects of the neuronal nicotinic receptor alpha7 (nAChRalpha7) are proposed to require acetylcholine release from vagal efferents. The necessity for vagal innervation in this anti-inflammatory pathway was tested in the skin, which lacks parasympathetic innervation, using ultraviolet radiation (UVB) to induce a local pro-inflammatory response. Cytokine responses to UV in mice administered chronic oral nicotine, a nAChR agonist, were reduced. Conversely, nAChRalpha7 knock-out mice exposed to UVB elicit an enhanced pro-inflammatory cytokine response in the skin. Altered pro-inflammatory responses correlated with changes in SOCS3 protein. These results demonstrate that nAChRalpha7 can participate in modulating a local pro-inflammatory response in the absence of parasympathetic innervation.


Cytokine-Induced Killer Cells Express CD39, CD38, CD203a, CD73 Ectoenzymes and P1 Adenosinergic Receptors.

  • Alberto L Horenstein‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Cytokine-induced killer (CIK) cells, a heterogeneous T cell population obtained by in vitro differentiation of peripheral blood mononuclear cells (PBMC), represent a promising immunological approach in cancer. Numerous studies have explored the role of CD38, CD39, CD203a/PC-1, and CD73 in generating extracellular adenosine (ADO) and thus in shaping the tumor niche in favor of proliferation. The findings shown here reveal that CIK cells are able to produce extracellular ADO via traditional (CD39/CD73) and/or alternative (CD38/CD203a/CD73 or CD203a/CD73) pathways. Transcriptome analysis showed the mRNA expression of these molecules and their modulation during PBMC to CIK differentiation. When PBMC from normal subjects or cancer bearing patients were differentiated into CIK cells under normoxic conditions, CD38 and CD39 were greatly up-regulated while the number of CD203a, and CD73 positive cells underwent minor changes. Since hypoxic conditions are often found in tumors, we asked whether CD39, CD38, CD203a, and CD73 expressed by CIK cells were modulated by hypoxia. PBMC isolated from cancer patients and differentiated into CIK cells in hypoxic conditions did not show relevant changes in CD38, CD39, CD73, CD203a, and CD26. CIK cells also expressed A1, A2A, and A2B ADO receptors and they only underwent minor changes as a consequence of hypoxia. The present study sheds light on a previously unknown functional aspect of CIK cells, opening the possibility of pharmacologically modulated ADO-generating ectoezymes to improve CIK cells performance.


Interferon gamma upregulates the cytokine receptors IFNGR1 and TNFRSF1A in HT-29-MTX E12 cells.

  • Brandon Johnson‎ et al.
  • Cytokine‎
  • 2022‎

The intestinal mucosa protects the body from physical damage, pathogens, and antigens. However, inflammatory bowel diseases (IBDs) patients suffer from poor mucosal tissue function, including the lack of an effective cellular and/or mucus barrier. We investigated the mucus producing human colonic epithelial cell line HT29-MTX E12 to study its suitability as an in vitro model of cell/mucus barrier adaption during IBD. It was found that the proinflammatory cytokine interferon-gamma (IFN-γ), but not tumor necrosis factor-alpha (TNF-α), reduced cell viability. IFN-γ and TNF-α were found to synergize to decrease barrier function, as measured by trans-epithelial electric resistance (TER) and molecular flux assays. Cells cultured under an air-liquid interface produced an adherent mucus layer, and under these conditions reduced barrier function was found after cytokine exposure. Furthermore, IFN-γ, but not TNF-α treatment, upregulated the IFN-γ receptor 1 (IFNGR1) and TNF-α receptor super family 1A (TNFRSF1A) subunit mRNA in vitro. Co-stimulation resulted in increased mRNA expression of CLDN 2 and 5, two gene known to play a role in epithelial barrier integrity. Analysis of IBD patient samples revealed IFNGR1 and TNFRSF mRNA increased coincidently with guanylate binding protein 1 (GBP1) expression, an indicator of NFkB activity. Lastly, CLDN2 was found at higher levels in IBD patients while HNF4a was suppressed with disease. In conclusion, IFN-γ and TNF-α degrade epithelial/mucus barriers coincident with changes in CLDN gene and cytokine receptor subunit mRNA expression in HT29-MTX E12 cells. These changes largely reflect those observed in IBD patient samples.


Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis.

  • Gong Deuk Bae‎ et al.
  • Scientific reports‎
  • 2019‎

Caveolin-1 (cav-1), the principal structural and signalling protein of caveolae, is implicated in various signalling events, including apoptotic cell death in type 2 diabetes. However, the precise role of beta cells in apoptosis has not been clearly defined. In this study, we investigated the involvement of cav-1 in cytokine-induced beta cell apoptosis and its underlying mechanisms in the rat beta cell line, INS-1 and isolated islets. Treatment of cytokine mixture (CM, TNFα + IL-1β) significantly increased the mRNA and protein expression of cav-1, and resulting in increased formation of caveolae. We found that IL-1 receptor 1 and TNF receptor localized to plasma membrane lipid rafts in the control cells and CM treatment recruited these receptors to the caveolae domain. After cav-1 siRNA transfection, CM-dependent NF-κB activation was reduced and consequently downregulated the mRNA expression of iNOS and IL-1β. Finally, decreased cell viability by CM treatment was ameliorated in both INS-1 cells and isolated islets treated with cav-1 siRNA. These results suggest that increased cav-1 expression and recruitment of cytokine receptors into caveolae contribute to CM-induced beta cell apoptosis.


Sequential control of myeloid cell proliferation and differentiation by cytokine receptor-based chimeric antigen receptors.

  • Kyoko Nakajima‎ et al.
  • PloS one‎
  • 2022‎

As chimeric antigen receptor (CAR)-T cell therapy has been recently applied in clinics, controlling the fate of blood cells is increasingly important for curing blood disorders. In this study, we aim to construct proliferation-inducing and differentiation-inducing CARs (piCAR and diCAR) with two different antigen specificities and express them simultaneously on the cell surface. Since the two antigens are non-cross-reactive and exclusively activate piCAR or diCAR, sequential induction from cell proliferation to differentiation could be controlled by switching the antigens added in the culture medium. To demonstrate this notion, a murine myeloid progenitor cell line 32Dcl3, which proliferates in an IL-3-dependent manner and differentiates into granulocytes when cultured in the presence of G-CSF, is chosen as a model. To mimic the cell fate control of 32Dcl3 cells, IL-3R-based piCAR and G-CSFR-based diCAR are rationally designed and co-expressed in 32Dcl3 cells to evaluate the proliferation- and differentiation-inducing functions. Consequently, the sequential induction from proliferation to differentiation with switching the cytokine from IL-3 to G-CSF is successfully replaced by switching the antigen from one to another in the CARs-co-expressing cells. Thus, piCAR and diCAR may become a platform technology for sequentially controlling proliferation and differentiation of various cell types that need to be produced in cell and gene therapies.


Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages.

  • Wei Liao‎ et al.
  • Nature immunology‎
  • 2011‎

Helper T cells control host defense against pathogens. The receptors for interleukin 12 (IL-12), IL-4 and IL-6 are required for differentiation into the T(H)1, T(H)2 and T(H)17 subsets of helper T cells, respectively. IL-2 signaling via the transcription factor STAT5 controls T(H)2 differentiation by regulating both the T(H)2 cytokine gene cluster and expression of Il4ra, the gene encoding the IL-4 receptor α-chain. Here we show that IL-2 regulated T(H)1 differentiation, inducing STAT5-dependent expression of the IL-12 receptor β2-chain (IL-12Rβ2) and the transcription factor T-bet, with impaired human T(H)1 differentiation when IL-2 was blocked. T(H)1 differentiation was also impaired in mouse Il2(-/-) T cells but was restored by IL-12Rβ2 expression. Consistent with the inhibition of T(H)17 differentiation by IL-2, treatment with IL-2 resulted in lower expression of the genes encoding the IL-6 receptor α-chain (Il6ra) and the IL-6 signal transducer gp130 (encoded by Il6st), and retroviral transduction of Il6st augmented T(H)17 differentiation even when IL-2 was present. Thus, IL-2 influences helper T cell differentiation by modulating the expression of cytokine receptors to help specify and maintain differentiated states.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: