Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 122 papers

Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors.

  • Shanshan Ma‎ et al.
  • Molecular cell‎
  • 2020‎

Corticotropin-releasing factor (CRF) and the three related peptides urocortins 1-3 (UCN1-UCN3) are endocrine hormones that control the stress responses by activating CRF1R and CRF2R, two members of class B G-protein-coupled receptors (GPCRs). Here, we present two cryoelectron microscopy (cryo-EM) structures of UCN1-bound CRF1R and CRF2R with the stimulatory G protein. In both structures, UCN1 adopts a single straight helix with its N terminus dipped into the receptor transmembrane bundle. Although the peptide-binding residues in CRF1R and CRF2R are different from other members of class B GPCRs, the residues involved in receptor activation and G protein coupling are conserved. In addition, both structures reveal bound cholesterol molecules to the receptor transmembrane helices. Our structures define the basis of ligand-binding specificity in the CRF receptor-hormone system, establish a common mechanism of class B GPCR activation and G protein coupling, and provide a paradigm for studying membrane protein-lipid interactions for class B GPCRs.


Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity.

  • Eugene L Dimitrov‎ et al.
  • Endocrinology‎
  • 2007‎

The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.


Corticotropin-releasing Hormone and Its Biological Diversity toward Angiogenesis.

  • Eunok Im‎
  • Intestinal research‎
  • 2014‎

Angiogenesis is the formation of new blood vessels from existing ones and an underlying cause of numerous human diseases, including cancer and inflammation. A large body of evidence indicates that angiogenic inhibitors have therapeutic potential in the treatment of vascular diseases. However, detrimental side effects and low efficacy hinder their use in clinical practice. Members of the corticotropin-releasing hormone (CRH) family, which comprises CRH, urocortin I-III, and CRH receptors (CRHR) 1 and 2, are broadly expressed in the brain and peripheral tissues, including the intestine and cardiovascular system. The CRH family regulates stress-related responses through the hypothalamic-pituitary-adrenal axis. Therapeutic agents that target CRH family members offer a new approach to the treatment of various gastrointestinal disorders, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and colorectal cancer. Since the discovery that CRHR 2 has anti-angiogenic activity during postnatal development in mice, studies have focused on the role of the CRH system in the modulation of blood vessel formation and cardiovascular function. This review will outline the basic biological functions of the CRH family members and the implications for the development of novel anti-angiogenic therapies.


Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

  • Evren Eraslan‎ et al.
  • Noise & health‎
  • 2015‎

Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.


Receptors for corticotropin-releasing hormone in human pituitary: binding characteristics and autoradiographic localization to immunocytochemically defined proopiomelanocortin cells.

  • G Smets‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 1991‎

Using autoradiography combined with immunocytochemistry, we demonstrated that the target cells of CRH in the human pituitary were proopiomelanocortin cells. Scatchard analysis of [125I]Tyr0-oCRH saturation binding revealed the presence of one class of saturable, high affinity sites on pituitary tissue homogenate. The equilibrium dissociation constant (Kd) for [125I]Tyr0-oCRH ranged from 1.1-1.6 nM, and the receptor density was between 200-350 fmol/mg protein. Fixation of cryostat sections with 4% paraformaldehyde before tracer incubation improved both tissue preservation and localization of the CRH receptor at the cellular level. Additional postfixation with 1% glutaraldehyde inhibited tracer diffusion during subsequent immunocytochemistry and autoradiography. [125I]Tyr0-oCRH was found in cytoplasmic inclusions or at the cell periphery of ACTH/beta-endorphin cells in the anterior pituitary. Single cells of the posterior pituitary were also CRH receptor positive. Cells staining for PRL or GH were CRH receptor negative. We conclude that CRH binds only to high affinity receptors on ACTH/beta-endorphin cells in the human pituitary.


A Novel Mast Cell Stabilizer JM25-1 Rehabilitates Impaired Gut Barrier by Targeting the Corticotropin-Releasing Hormone Receptors.

  • Yueshan Sun‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Mast cell (MC) plays a central role in intestinal permeability; however, few MC-targeting drugs are currently available for protection of the intestinal barrier in clinical practice. A nonfluorinated Lidocaine analog 2-diethylamino-N-2,5-dimethylphenyl acetamide (JM25-1) displays anti-allergic effect, but its impact on MC remains elusive. In this study, we explored whether JM25-1 has therapeutic potential on intestinal barrier defect through stabilizing MC. JM25-1 alleviated release of β-hexosaminidase and cytokine production of MC. The paracellular permeability was redressed by JM25-1 in intestinal epithelial cell monolayers co-cultured with activated MC. In vivo, JM25-1 diminished intestinal mucosal MC amount and cytokine production, especially downregulating the expression of CRHR1, accompanied by an increase of CRHR2. Protective effects appeared in JM25-1-treated stress rats with a recovery of weight and intestinal barrier integrity. Through network pharmacology analysis, JM25-1 showed a therapeutic possibility for irritable bowel syndrome (IBS) with predictive targeting on PI3K/AKT/mTOR signaling. As expected, JM25-1 reinforced p-PI3K, p-AKT, p-mTOR signaling in MC, while the mTOR inhibitor Rapamycin reversed the action of JM25-1 on the expression of CRHR1 and CRHR2. Moreover, JM25-1 successfully remedied intestinal defect and declined MC and CRHR1 expression in rat colon caused by colonic mucus of IBS patients. Our data implied that JM25-1 possessed therapeutic capacity against intestinal barrier defects by targeting the CRH receptors of MC through PI3K/AKT/mTOR signaling.


Corticotropin-Releasing Hormone Receptor 2 Gene Variants in Irritable Bowel Syndrome.

  • Hazuki Komuro‎ et al.
  • PloS one‎
  • 2016‎

Corticotropin-releasing hormone (CRH) plays an important role in the pathophysiology of irritable bowel syndrome (IBS) and regulates the stress response through two CRH receptors (R1 and R2). Previously, we reported that a CRHR1 gene polymorphism (rs110402, rs242924, and rs7209436) and haplotypes were associated with IBS. However, the association between the CRHR2 gene and IBS was not investigated. We tested the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are associated with IBS pathophysiology and negative emotion in IBS patients.


Dynamic Expression and Regulation of Urotensin I and Corticotropin-Releasing Hormone Receptors in Ovary of Olive Flounder Paralichthys olivaceus.

  • Hong Zhou‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Urotensin I (UI), a fish corticotropin-releasing hormone (CRH) like peptide, has been found throughout vertebrate species that has great effects on adaptive physiology comprising stress-related responses, and osmotic regulation by binding with CRH type I receptor (CRHR1) and CRH type II receptor (CRHR2) in fish. Dynamic expression and regulation of UI and CRH receptors in the olive flounder ovarian follicle were studied so as to make further efforts to understand the role of UI in the development of teleost ovary. The results showed that stage-specific change in UI mRNA levels in ovarian follicles of olive flounder. UI and CRHR1 mRNA levels were higher in stage III follicles (300∼500 μm diameter) compared to stage II (90∼300 μm diameter) and IV (500∼800 μm diameter) follicles, however, the levels of CRHR2 mRNA were decreased in line with the ovarian development from stage II to stage IV. A strong signal of UI protein was observed in the follicular cells and oocyte in stage III and IV follicles by immunohistochemistry. In vitro treatment of olive flounder ovarian follicles with human chorionic gonadotropin (hCG) showed that the mRNA expression of UI increased significantly at low concentration and decreased at high concentration at 6 h, but the CRHR1 and CRHR2 mRNA did not change obviously. In addition, the results of incubation with 17α, 20β-dihydroxy-4-oregnen-3-one (DHP) show that UI and CRHR1 mRNA expression were elevated with increasing concentrations at 9 h. All above results indicated that UI and CRH receptors may have a vital effect on olive flounder ovarian development.


Balancing tonic and phasic inhibition in hypothalamic corticotropin-releasing hormone neurons.

  • Phillip L W Colmers‎ et al.
  • The Journal of physiology‎
  • 2018‎

GABA transporter (GAT) blockade recruits extrasynaptic GABAA receptors (GABAA Rs) and amplifies constitutive presynaptic GABAB R activity. Extrasynaptic GABAA Rs contribute to a tonic current. Corticosteroids increase the tonic current mediated by extrasynaptic GABAA Rs.


A novel role of peripheral corticotropin-releasing hormone (CRH) on dermal fibroblasts.

  • Olga Rassouli‎ et al.
  • PloS one‎
  • 2011‎

Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh-/-) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF(1) antagonist antalarmin recapitulated the findings in the Crh-/- cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis.


Neuropeptide W-Induced Hypophagia is Mediated Through Corticotropin-Releasing Hormone-Containing Neurons.

  • Fumiko Takenoya‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2015‎

Neuropeptide W (NPW), which was originally isolated from the porcine hypothalamus, has been identified as the endogenous ligand for both the NPBWR1 (GPR7) and NPBWR2 (GPR8) receptors. These receptors, which belong to the orphan G protein-coupled receptor (GPCR) family, share a high sequence homology with the opioid and somatostatin receptor families. NPW and NPBWR1 are widely distributed in the rat central nervous system (CNS). While the intracerebroventricular (i.c.v.) injection of NPW elevates plasma corticosterone levels, the intravenous administration of NPW in conjunction with a corticotropin-releasing hormone (CRH) antagonist blocks NPW-induced corticosterone secretion. It has been reported that NPW is involved in regulating the hypothalamus-pituitary-adrenal cortex (HPA) axis and that i.c.v. administration of NPW decreases feeding behavior. The aim of the present study was to ascertain if NPW's role in feeding regulation is mediated (or not) through corticotropin-releasing hormone (CRH)-containing neurons. We found that NPW-containing axon terminals make synapses with CRH-immunoreactive cell bodies and dendritic processes in the hypothalamic paraventricular nucleus (PVN). The central infusion of NPW significantly induced c-Fos expression in CRH-immunoreactive neurons in the mouse PVN, but not in vasopressin- or oxytocin-immunoreactive neurons. To determine if NPW regulates feeding behavior through CRH neurons, the feeding behavior of mice was studied following the i.c.v. administration NPW in the presence or absence of pretreatment with a CRH antagonist. While NPW administration decreased feeding activity, the CRH antagonist inhibited this effect. These results strongly suggest that NPW regulates feeding behavior through CRH neurons in the mouse brain.


Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats.

  • Ricardo Borges Machado‎ et al.
  • International journal of endocrinology‎
  • 2010‎

Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH) impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH(9-41), a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM) and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis-at least at the hypothalamic level-is capable to reduce the sleep rebound induced by sleep deprivation.


The octadecaneuropeptide-induced response of corticotropin-releasing hormone messenger RNA levels is mediated by GABA(A) receptors and modulated by endogenous steroids.

  • L Givalois‎ et al.
  • Neuroscience‎
  • 1998‎

The involvement of endogenous benzodiazepine octadecaneuropeptide in the regulation of corticotropin-releasing hormone messenger RNA expression has been studied using in situ hybridization technique. Intracerebroventricular injection of octadecaneuropeptide (4 microg/kg) induced a 26% decrease in the corticotropin-releasing hormone messenger RNA expression in the hypothalamic paraventricular nucleus. Concomitant injection of octadecaneuropeptide and i.p. injection of the GABA(A) receptor agonist muscimol (4 mg/kg) potentiated the corticotropin-releasing hormone messenger RNA decrease ( - 34%). The depressing effect of octadecaneuropeptide on corticotropin-releasing hormone gene expression was totally reversed by pretreatment of the animals with the GABA(A) receptor antagonist picrotoxin (5 mg/kg; i.p.) or by pretreatment with the benzodiazepine receptor antagonist flumazenil (4 mg/kg; i.p.). To determine the reciprocal involvement of adrenal and sexual steroids in this regulation, animals are adrenalectomized and/or castrated. Adrenalectomy reversed the effect induced by octadecaneuropeptide, which increased corticotropin-releasing hormone messenger RNA expression (+21%), while castration did not modify the negative influence of octadecaneuropeptide. When rats were adrenalectomized and castrated, the adrenalectomy influence was predominant, since octadecaneuropeptide increased significantly the hybridization signal (+18%). The involvement of neurosteroids, especially reduced metabolites of progesterone was also investigated. The concomitant injection of octadecaneuropeptide and subcutaneous injection of the 5alpha-reductase inhibitor MK-906 (14 mg/kg) to adrenalectomized and castrated rats, reduced significantly by 60% the increase of corticotropin-releasing hormone messenger RNA expression induced by octadecaneuropeptide. These results indicate that in vivo the endogenous benzodiazepine octadecaneuropeptide, via an activation of the benzodiazepine sites of the GABA(A) receptor, negatively modulates corticotropin-releasing hormone neuronal activity and that this modulation can be negatively or positively influenced by central and peripheral steroids.


Corticotropin-releasing hormone exerts direct effects on neuronal progenitor cells: implications for neuroprotection.

  • Y Koutmani‎ et al.
  • Molecular psychiatry‎
  • 2013‎

Neurogenesis during embryonic and adult life is tightly regulated by a network of transcriptional, growth and hormonal factors. Emerging evidence indicates that activation of the stress response, via the associated glucocorticoid increase, reduces neurogenesis and contributes to the development of adult diseases.As corticotrophin-releasing hormone (CRH) or factor is the major mediator of adaptive response to stressors, we sought to investigate its involvement in this process. Accordingly, we found that CRH could reverse the damaging effects of glucocorticoid on neural stem/progenitor cells (NS/PCs), while its genetic deficiency results in compromised proliferation and enhanced apoptosis during neurogenesis. Analyses in fetal and adult mouse brain revealed significant expression of CRH receptors in proliferating neuronal progenitors. Furthermore, by using primary cultures of NS/PCs, we characterized the molecular mechanisms and identified CRH receptor-1 as the receptor mediating the neuroprotective effects of CRH. Finally, we demonstrate the expression of CRH receptors in human fetal brain from early gestational age, in areas of active neuronal proliferation. These observations raise the intriguing possibility for CRH-mediated pharmacological applications in diseases characterized by altered neuronal homeostasis, including depression, dementia, neurodegenerative diseases, brain traumas and obesity.


Local production of corticotropin-releasing hormone in prefrontal cortex modulates male-specific novelty exploration.

  • Michael H Riad‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.


Antagonizing the corticotropin releasing hormone receptor 1 with antalarmin reduces the progression of endometriosis.

  • Annelyn Torres-Reverón‎ et al.
  • PloS one‎
  • 2018‎

Endometriosis is a disorder in which endometrial tissue is found outside the uterus causing pain, infertility and stress. Finding effective, non-hormonal and long-term treatments for endometriosis still remains one of the most significant challenges in the field. Corticotropin releasing hormone (CRH) is one of the main signaling peptides within the hypothalamic pituitary adrenal (HPA) axis released in response to stress. CRH can affect nervous and visceral tissues such as the uterus and gut via activation of two types of CRH receptors: CRHR1 and CRHR2. Our aim was to determine if blocking CRHR1 with antalarmin will reduce endometriosis progression. In experiment 1 we induced endometriosis in female rats by suturing uterine horn tissue next to the intestinal mesentery and allowed to progress for 7 days. We determined that after 7 days, there was a significant increase in CRHR1 within endometriotic vesicles as compared to normal uterus. In Experiment 2, we induced endometriosis and administered either antalarmin (20 mg/kg, i.p.) or vehicle during the first 7 days after surgery. A separate group of sham surgery rats served as non-endometriosis controls. Endometriosis was allowed to progress until 60 days after surgery, at which time rats were tested for anxiety behaviors. At the time of sacrifice, endometriotic vesicles, uterus and blood were collected. Treatment with antalarmin significantly reduced the size (67% decrease) and number (30% decrease) of endometriotic vesicles. Antalarmin also prevented the increase in CRH and CRHR1 mRNA within endometriotic vesicles but not of glucocorticoid receptor. Endometriosis did not change anxiety behaviors in the open field and zero-maze tests and prior antalarmin administration did not modify this. Our data provides the first in-vivo demonstration for use of CRHR1 antagonist for the treatment of endometriosis opening the possibility for further exploring CRH signaling as a treatment target for this debilitating disease.


Corticotropin-releasing hormone, its binding protein and receptors in human cervical tissue at preterm and term labor in comparison to non-pregnant state.

  • Aurelija Klimaviciute‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2006‎

Preterm birth is still the leading cause of neonatal morbidity and mortality. The level of corticotropin-releasing hormone (CRH) is known to be significantly elevated in the maternal plasma at preterm birth. Although, CRH, CRH-binding protein (CRH-BP), CRH-receptor 1 (CRH-R1) and CRH-R2 have been identified both at mRNA and protein level in human placenta, deciduas, fetal membranes, endometrium and myometrium, no corresponding information is yet available on cervix. Thus, the aim of this study was to compare the levels of the mRNA species coding for CRH, CRH-BP, CRH-R1 and CRH-R2 in human cervical tissue and myometrium at preterm and term labor and not in labor as well as in the non-pregnant state, and to localize the corresponding proteins employing immunohistochemical analysis.


Involvement of Heat Shock Proteins on the Transcriptional Regulation of Corticotropin-Releasing Hormone in Medaka.

  • Tomoya Uchimura‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Medaka (Oryzias latipes) are teleost fish with a XX/XY sex determination system. Recently, it was reported that high temperature (HT) induced the masculinization of XX medaka by increasing the levels of cortisol, a major glucocorticoid produced by interrenal cells in teleosts. Cortisol secretion is regulated by adrenocorticotropic hormone (ACTH) secreted from the pituitary gland, which is partly regulated by corticotropin-releasing hormone (CRH) secreted from the hypothalamus. In teleosts, two crh paralogs, named crha and crhb, have been identified. Recently, the expression of crhb but not crha was upregulated by HT during gonadal sex differentiation period in medaka and loss-of-functions of its receptors under HT suppressed masculinization of XX medaka and increase of cortisol levels, suggesting that crhb is involved in masculinization induced by HT. However, the transcriptional regulation of crhb under HT has not been elucidated. We analyzed the gene expression pattern in the hypothalamus of medaka embryos incubated under HT using DNA microarray. The expressions of heat shock protein (hsp) genes, such as hsp70.1 and hsp30, were increased. Overexpression of hsp70.1 or hsp30 in cultured rat hypothalamic 4B cells significantly induced crh gene expression. Moreover, hypothalamic hsp70.1-overexpressing transgenic medaka also showed increased crhb gene expression that increased cortisol levels compared with fish incubated at a normal temperature. These results provide the first evidence that HSPs induce cortisol levels by elevating crhb gene expression in the hypothalamus.


Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder.

  • Sheng-Chiang Wang‎ et al.
  • Journal of biomedical science‎
  • 2019‎

Traumatic experience may lead to various psychological sequelae including the unforgettable trauma-associated memory as seen in posttraumatic stress disorder (PTSD), with a mechanism of impaired fear extinction due to biological imbalance among hypothalamic-pituitary-adrenal (HPA) axis and fear circuit areas such as medial prefrontal cortex (mPFC), hippocampus, and amygdala. Recently the impaired sociability seen in PTSD patients received great attention and the involvement of oxytocin (OXT) mediation is worth being investigated. This study examined whether the trauma-altered prosocial behavior can be modulated by OXT manipulation and its relationship with corticotropin-releasing hormone (CRH) signaling.


GABA regulates corticotropin releasing hormone levels in the paraventricular nucleus of the hypothalamus in newborn mice.

  • Matthew S Stratton‎ et al.
  • Physiology & behavior‎
  • 2011‎

The paraventricular nucleus of the hypothalamus (PVN) is a major regulator of stress responses via release of corticotropin releasing hormone (CRH) to the pituitary gland. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is characteristic of individuals with major depressive disorder (MDD). Postmortem data from individuals diagnosed with MDD show increased levels of CRH mRNA and CRH immunoreactive neurons in the PVN. In the current study, an immunohistochemical (IHC) analysis revealed increased levels of CRH in the PVN of newborn mice lacking functional GABA(B) receptors. There was no difference in the total number of CRH immunoreactive cells. By contrast, there was a significant increase in the amount of CRH immunoreactivity per cell. Interestingly, this increase in CRH levels in the GABA(B) receptor R1 subunit knockout was limited to the rostral PVN. While GABAergic regulation of the HPA axis has been previously reported in adult animals, this study provides evidence of region-specific GABA modulation of immunoreactive CRH in newborns.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: