Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 123 papers

Simulating CXCR5 Dynamics in Complex Tissue Microenvironments.

  • Jason Cosgrove‎ et al.
  • Frontiers in immunology‎
  • 2021‎

To effectively navigate complex tissue microenvironments, immune cells sense molecular concentration gradients using G-protein coupled receptors. However, due to the complexity of receptor activity, and the multimodal nature of chemokine gradients in vivo, chemokine receptor activity in situ is poorly understood. To address this issue, we apply a modelling and simulation approach that permits analysis of the spatiotemporal dynamics of CXCR5 expression within an in silico B-follicle with single-cell resolution. Using this approach, we show that that in silico B-cell scanning is robust to changes in receptor numbers and changes in individual kinetic rates of receptor activity, but sensitive to global perturbations where multiple parameters are altered simultaneously. Through multi-objective optimization analysis we find that the rapid modulation of CXCR5 activity through receptor binding, desensitization and recycling is required for optimal antigen scanning rates. From these analyses we predict that chemokine receptor signaling dynamics regulate migration in complex tissue microenvironments to a greater extent than the total numbers of receptors on the cell surface.


p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.

  • Nikita A Mitkin‎ et al.
  • Scientific reports‎
  • 2015‎

Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.


Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs.

  • Lars Ohl‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Homeostatic chemokines participate in the development of secondary lymphoid organs and later on in the functional organization of these tissues. The development of lymph nodes (LNs) and Peyer's patches depends on the recruitment of CD3- CD4+ interleukin (IL)-7R alpha hi cells to sites of future organ development. CD3- CD4+ IL-7R alpha hi cells express the chemokine receptor CXCR5 and might be attracted by its ligand CXCL13, which is secreted by mesenchymal cells. Mesenchymal cells also secrete CCL19, a ligand for CCR7, yet it is not clear whether CCR7 and CCL19 are important for secondary lymphoid organ development. Analyzing CXCR5-/- CCR7-/- double deficient mice we now show that these mice lack all examined peripheral LNs suggesting a profound role for both receptors in secondary lymphoid organ development. We demonstrate that CD3- CD4+ IL-7R alpha hi cells express CXCR5 as well as CCR7 indicating that both receptors cooperate during an early step of secondary lymphoid organ development. Furthermore, CXCR5-/- CCR7-/- mice display a severely disturbed architecture of mesenteric LN and spleen. Due to an impaired migration of B cells into the white pulp, CXCR5-/- CCR7-/- mice fail to develop B cell follicles but show small clusters of unorganized lymphocytes in the spleen. These data demonstrate a cooperative function of CXCR5 and CCR7 in lymphoid organ organogenesis and organization.


CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor T cells.

  • Guangchao Li‎ et al.
  • Molecular therapy oncolytics‎
  • 2021‎

The efficacy of chimeric antigen receptor (CAR) T is still not optimal for solid tumors, partly due to the lack of T cell infiltration to the tumor site. One promising strategy is to guide T cells through tumor-specific chemokines, provided that the matching chemokine receptors are expressed on T cells. Previous reports showed that, for non-small cell lung cancer (NSCLC) patients, the tumor sites express high levels of chemokine CXCL13, whereas CXCR5, the only receptor for CXCL13, is mainly expressed on B cells and follicle helper T cells. Therefore, we engineered an epidermal growth factor receptor (EGFR) CAR-T cell to express a second receptor CXCR5, to facilitate migration of CAR-T cells to the CXCL13-expressing NSCLC tumors, and to minimize EGFR-CAR-T possible off-tumor, on-target toxicity. We first confirmed CXCL13 expression in NSCLC patient blood and cancer tissues and the absence of CXCR5 expression in normal CD3 T cells. Next, we demonstrated that EGFR-CXCR5-CAR-T cells have similar killing activity as EGFR-CAR-T with a cytotoxicity assay in vitro. Furthermore, the in vitro Transwell assay and in vivo xenograft tumor mouse model were used to confirm that EGFR-CXCR5-CAR-T exhibits a significant increase in T cell infiltration to CXCL13-expressing tumors and eradicates the CXCL13-expressing tumors more efficiently.


DOCK2 and phosphoinositide-3 kinase δ mediate two complementary signaling pathways for CXCR5-dependent B cell migration.

  • Stefanie Wissmann‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Naive B cells use the chemokine receptor CXCR5 to enter B cell follicles, where they scan CXCL13-expressing ICAM-1+ VCAM-1+ follicular dendritic cells (FDCs) for the presence of antigen. CXCL13-CXCR5-mediated motility is mainly driven by the Rac guanine exchange factor DOCK2, which contains a binding domain for phosphoinositide-3,4,5-triphosphate (PIP3) and other phospholipids. While p110δ, the catalytic subunit of the class IA phosphoinositide-3-kinase (PI3K) δ, contributes to CXCR5-mediated B cell migration, the precise interdependency of DOCK2, p110δ, or other PI3K family members during this process remains incompletely understood. Here, we combined in vitro chemotaxis assays and in vivo imaging to examine the contribution of these two factors during murine naïve B cell migration to CXCL13. Our data confirm that p110δ is the main catalytic subunit mediating PI3K-dependent migration downstream CXCR5, whereas it does not contribute to chemotaxis triggered by CXCR4 or CCR7, two other chemokine receptors expressed on naïve B cells. The contribution of p110δ activity to CXCR5-driven migration was complementary to that of DOCK2, and pharmacological or genetic interference with both pathways completely abrogated B cell chemotaxis to CXCL13. Intravital microscopy of control and gene-deficient B cells migrating on FDCs confirmed that lack of DOCK2 caused a profound migration defect, whereas p110δ contributed to cell speed and directionality. B cells lacking active p110δ also displayed defective adhesion to ICAM-1; yet, their migration impairment was maintained on ICAM-1-deficient FDCs. In sum, our data uncover two complementary signaling pathways mediated by DOCK2 and p110δ, which enable CXCR5-driven naïve B cell examination of FDCs.


The Differential Expression and Function of the Inflammatory Chemokine Receptor CXCR5 in Benign Prostatic Hyperplasia and Prostate Cancer.

  • Lu Yang‎ et al.
  • International journal of medical sciences‎
  • 2015‎

Chemokine and chemokine receptors could have played an important role in tumor angiogenesis and distant metastasis. The mechanism of inflammation, expression and function of chemokines and chemokine receptors in benign prostatic hyperplasia (BPH) and prostate cancer (PCa) remain unclear. The purpose of present study is to detect differential expression and function of chemokines and chemokine receptors (CCRs) in BPH and PCa.


The first non-mammalian CXCR5 in a teleost fish: molecular cloning and expression analysis in grass carp (Ctenopharyngodon idella).

  • Qiao Q Xu‎ et al.
  • BMC immunology‎
  • 2010‎

Chemokines, a group of small and structurally related proteins, mediate chemotaxis of various cell types via chemokine receptors. In mammals, seven different CXC chemokine receptors denoted as CXCR1 to CXCR7 have been reported. However, the chemokine receptor CXCR5 has not been reported in other vertebrates.


CXCL13/CXCR5 Axis Predicts Poor Prognosis and Promotes Progression Through PI3K/AKT/mTOR Pathway in Clear Cell Renal Cell Carcinoma.

  • Zaosong Zheng‎ et al.
  • Frontiers in oncology‎
  • 2018‎

The chemokine ligands and their receptors play critical roles in cancer progression and patients outcomes. We found that CXCL13 was significantly upregulated in ccRCC tissues compared with normal tissues in both The Cancer Genome Atlas (TCGA) cohort and a validated cohort of 90 pairs ccRCC tissues. Statistical analysis showed that high CXCL13 expression related to advanced disease stage and poor prognosis in ccRCC. We also revealed that serum CXCL13 levels in ccRCC patients (n = 50) were significantly higher than in healthy controls (n = 40). Receiver operating characteristic (ROC) curve revealed that tissue and serum CXCL13 expression might be a diagnostic biomarker for ccRCC with an area under curve (AUC) of 0.809 and 0.704, respectively. CXCL13 was significantly associated with its receptor, CXCR5, in ccRCC tissues, and ccRCC patients in high CXCL13 high CXCR5 expression group have a worst prognosis. Functional and mechanistic study revealed that CXCL13 promoted the proliferation and migration of ccRCC cells by binding to CXCR5 and activated PI3K/AKT/mTOR signaling pathway. These results suggested that CXCL13/CXCR5 axis played a significant role in ccRCC and might be a therapeutic target and prognostic biomarker.


B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5.

  • D F Legler‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Although most leukocytes, T lymphocytes in particular, respond to several different chemokines, there is virtually no information on chemokine activities and chemokine receptors in B lymphocytes. A putative chemokine receptor, BLR1, that is expressed in Burkitt's lymphoma cells and B lymphocytes was cloned a few years ago. Deletion of the gene for BLR1 yielded mice with abnormal primary follicles and germinal centers of the spleen and Peyer's patches, reflecting the inability of B lymphocytes to migrate into B cell areas. By screening expressed sequence tag DNA sequences, we have identified a CXC chemokine, termed B cell-attracting chemokine 1 (BCA-1), that is chemotactic for human B lymphocytes. BCA-1 cDNA encodes a protein of 109 amino acids with a leader sequence of 22 residues. The mature protein shares 23-34% identical amino acids with known CXC chemokines and is constitutively expressed in secondary lymphoid organs. BCA-1 was chemically synthesized and tested for activity on murine pre-B cells 300-19 transfected with BLR1 and on human blood B lymphocytes. In transfected cells, BCA-1 induced chemotaxis and Ca2+ mobilization demonstrating that it acts via BLR1. Under the same conditions, no activity was obtained with 10 CXC and 19 CC chemokines, lymphotactin, neurotactin/fractalkine and several other peptide ligands. BCA-1 was also a highly effective attractant for human blood B lymphocytes (which express BLR1), but was inactive on freshly isolated or IL-2-stimulated T lymphocytes, monocytes, and neutrophils. In agreement with the nomenclature rules for chemokine receptors, we propose the term CXCR5 for BLR1. Together with the observed disturbance of B cell colonization in BLR1/ CXCR5-deficient mice, the present results indicate that chemotactic recruitment by locally produced BCA-1 is important for the development of B cell areas of secondary lymphoid tissues.


CXCR4, CXCR5 and CD44 May Be Involved in Homing of Lymphoma Cells into the Eye in a Patient Derived Xenograft Homing Mouse Model for Primary Vitreoretinal Lymphoma.

  • Neele Babst‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Background: Primary vitreoretinal lymphoma (PVRL), a rare malignancy of the eye, is strongly related to primary central nervous system lymphoma (PCNSL). We hypothesized that lymphoma cells disseminate to the CNS and eye tissue via distinct homing receptors. The objective of this study was to test expression of CXCR4, CXCR5, CXCR7 and CD44 homing receptors on CD20 positive B-lymphoma cells on enucleated eyes using a PCNSL xenograft mouse model. Methods: We used indirect immunofluorescence double staining for CD20/CXCR4, CD20/CXCR5, CD20/CXCR7 and CD20/CD44 on enucleated eyes of a PCNSL xenograft mouse model with PVRL phenotype (PCNSL group) in comparison to a secondary CNS lymphoma xenograft mouse model (SCNSL group). Lymphoma infiltration was evaluated with an immunoreactive score (IRS). Results: 11/13 paired eyes of the PCNSL but none of the SCNSL group were infiltrated by CD20-positive cells. Particularly the choroid and to a lesser extent the retina of the PCNSL group were infiltrated by CD20+/CXCR4+, CD20+/CXCR5+, few CD20+/CD44+ but no CD20+/CXCR7+ cells. Expression of CXCR4 (p = 0.0205), CXCR5 (p = 0.0004) and CD44 (p < 0.0001) was significantly increased in the PCNSL compared to the SCNSL group. Conclusions: CD20+ PCNSL lymphoma cells infiltrating the eye co-express distinct homing receptors such as CXCR4 and CXCR5 in a PVRL homing mouse model. These receptors may be involved in PVRL homing into the eye.


Loss of Gαi proteins impairs thymocyte development, disrupts T-cell trafficking, and leads to an expanded population of splenic CD4+PD-1+CXCR5+/- T-cells.

  • Il-Young Hwang‎ et al.
  • Scientific reports‎
  • 2017‎

Thymocyte and T cell trafficking relies on signals initiated by G-protein coupled receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in thymocyte and T cell function, we developed several mouse models. Gαi2 deficiency in hematopoietic progenitors led to a small thymus, a double negative (DN)1/DN2 thymocyte transition block, and an accumulation of mature single positive (SP) thymocytes. Loss at the double positive (DP) stage of thymocyte development caused an increase in mature cells within the thymus. In both models an abnormal distribution of memory and naïve CD4 T cells occurred, and peripheral CD4 and CD8 T cells had reduced chemoattractant responses. The loss of Gαi3 had no discernable impact, however the lack of both G-proteins commencing at the DP stage caused a severe T cell phenotype. These mice lacked a thymic medullary region, exhibited thymocyte retention, had a peripheral T cell deficiency, and lacked T cell chemoattractant responses. Yet a noteworthy population of CD4+PD-1+CXCR5+/- cells resided in the spleen of these mice likely due to a loss of regulatory T cell function. Our results delineate a role for Gαi2 in early thymocyte development and for Gαi2/3 in multiple aspects of T cell biology.


Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins.

  • Stephen Middle‎ et al.
  • Experimental hematology & oncology‎
  • 2015‎

The aim of this study was to elucidate the mechanisms responsible for the location of B-cell non-Hodgkin's lymphoma (B-NHL) at different anatomical sites. We speculated that the malignant B cells in these disorders have the potential for trafficking between blood and secondary lymphoid organs (SLO) or extranodal sites and that their preferential accumulation at different locations is governed by the expression of key molecules that regulate the trafficking of normal lymphocytes.


A bivalent antihypertensive vaccine targeting L-type calcium channels and angiotensin AT1 receptors.

  • Hailang Wu‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Hypertension has been the leading preventable cause of premature death worldwide. The aim of this study was to design a more efficient vaccine against novel targets for the treatment of hypertension.


Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets.

  • Jeroen K Buskermolen‎ et al.
  • Journal of cellular physiology‎
  • 2017‎

The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL-6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP-1 secretion was reduced by CCL15/CCR3. In conclusion, this in-vitro study identifies chemokine receptor-ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL-6 and HGF and reducing the secretion of TIMP-1.


Suppression of Th2 and Tfh immune reactions by Nr4a receptors in mature T reg cells.

  • Takashi Sekiya‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Regulatory T (T reg) cells are central mediators of immune suppression. As such, T reg cells are characterized by a distinct pattern of gene expression, which includes up-regulation of immunosuppressive genes and silencing of inflammatory cytokine genes. Although an increasing number of transcription factors that regulate T reg cells have been identified, the mechanisms by which the T reg cell-specific transcriptional program is maintained and executed remain largely unknown. The Nr4a family of nuclear orphan receptors, which we recently identified as essential for the development of T reg cells, is highly expressed in mature T reg cells as well, suggesting that Nr4a factors play important roles even beyond T reg cell development. Here, we showed that deletion of Nr4a genes specifically in T reg cells caused fatal systemic immunopathology. Nr4a-deficient T reg cells exhibited global alteration of the expression of genes which specify the T reg cell lineage, including reduction of Foxp3 and Ikzf4. Furthermore, Nr4a deficiency abrogated T reg cell suppressive activities and accelerated conversion to cells with Th2 and follicular helper T (Tfh) effector-like characteristics, with heightened expression of Th2 and Tfh cytokine genes. These findings demonstrate that Nr4a factors play crucial roles in mature T reg cells by directly controlling a genetic program indispensable for T reg cell maintenance and function.


Dominant CD4+ T cell receptors remain stable throughout antiretroviral therapy-mediated immune restoration in people with HIV.

  • Alexis Sponaugle‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

In people with HIV (PWH), the post-antiretroviral therapy (ART) window is critical for immune restoration and HIV reservoir stabilization. We employ deep immune profiling and T cell receptor (TCR) sequencing and examine proliferation to assess how ART impacts T cell homeostasis. In PWH on long-term ART, lymphocyte frequencies and phenotypes are mostly stable. By contrast, broad phenotypic changes in natural killer (NK) cells, γδ T cells, B cells, and CD4+ and CD8+ T cells are observed in the post-ART window. Whereas CD8+ T cells mostly restore, memory CD4+ T subsets and cytolytic NK cells show incomplete restoration 1.4 years post ART. Surprisingly, the hierarchies and frequencies of dominant CD4 TCR clonotypes (0.1%-11% of all CD4+ T cells) remain stable post ART, suggesting that clonal homeostasis can be independent of homeostatic processes regulating CD4+ T cell absolute number, phenotypes, and function. The slow restoration of host immunity post ART also has implications for the design of ART interruption studies.


HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism.

  • Prabha Chandrasekaran‎ et al.
  • PloS one‎
  • 2014‎

Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV) encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs). Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1) degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.


Development of an Antigen-Antibody Co-Display System for Detecting Interaction of G-Protein-Coupled Receptors and Single-Chain Variable Fragments.

  • Yinjie Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

G-protein-coupled receptors (GPCRs), especially chemokine receptors, are ideal targets for monoclonal antibody drugs. Considering the special multi-pass transmembrane structure of GPCR, it is often a laborious job to obtain antibody information about off-targets and epitopes on antigens. To accelerate the process, a rapid and simple method needs to be developed. The split-ubiquitin-based yeast two hybrid system (YTH) was used as a blue script for a new method. By fusing with transmembrane peptides, scFv antibodies were designed to be anchored on the cytomembrane, where the GPCR was co-displayed as well. The coupled split-ubiquitin system transformed the scFv-GPCR interaction signal into the expression of reporter genes. By optimizing the topological structure of scFv fusion protein and key elements, including signal peptides, transmembrane peptides, and flexible linkers, a system named Antigen-Antibody Co-Display (AACD) was established, which rapidly detected the interactions between antibodies and their target GPCRs, CXCR4 and CXCR5, while also determining the off-target antibodies and antibody-associated epitopes. The AACD system can rapidly determine the association between GPCRs and their candidate antibodies and shorten the research period for off-target detection and epitope identification. This system should improve the process of GPCR antibody development and provide a new strategy for GPCRs antibody screening.


The Stat3 inhibitor, S3I-201, downregulates lymphocyte activation markers, chemokine receptors, and inflammatory cytokines in the BTBR T+ Itpr3tf/J mouse model of autism.

  • Sheikh F Ahmad‎ et al.
  • Brain research bulletin‎
  • 2019‎

Autism is a complex neurodevelopmental disorder with a high incidence rate. It is characterized by deficits in communication, a lack of social skills, cognitive inflexibility, and stereotypical behaviors. Autism has been gradually increasing in children over the past several years, without the existence of an effective treatment. BTBR T+ Itpr3tf/J (BTBR) mice serve as an accepted model to evaluate autistic-like behaviors as they display core behavioral symptoms displayed in autism. Previous findings showed that S3I-201, a selective Stat3 inhibitor, can be used to treat neuroinflammation disorders. Previously, we showed that S3I-201 treatment has therapeutic effects on autism-like behaviors, and Th1/Th17 and regulatory T cells in BTBR mice. The objective of the present study was to further explore the role of S3I-201 in BTBR mice, and this was performed by investigating the effects of S3I-201 treatment on lymphocyte activation markers (CD4+CD25+ and CD4+CD69+), chemokine receptors (CD4+CCR6+, CD4+CCR7+, CD4+CXCR4+, and CD4+CXCR5+), and proinflammatory cytokines (CD4+IL-6+ and CD4+TNF-α+) in the spleen cells of BTBR and C57BL/6 (C57) mice. The mRNA and protein expression levels of CD69, CCR6, CCR7, CXCR4, CXCR5, IL-1β, IL-6, and TNF-α were examined in the brain tissues, and in BTBR mice, a significant decrease in CD25, CD69, CCR6, CCR7, CXCR4, CXCR5, IL-6, and TNF-α producing CD4+ T cells was observed. The present findings suggest that treatment with S3I-201 may be a therapeutic approach to improve immune abnormalities in a subgroup of autistic subjects.


Circulating T Follicular Helper Cell Abnormalities Associated to Different Clinical Forms of Chronic Chagas Disease.

  • Luz P Quebrada Palacio‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2020‎

Multiple perturbations of the immune response affecting a range of cells have been reported in Trypanosoma cruzi-infected individuals and associated to clinical manifestations of chronic Chagas disease. There is a paucity of knowledge about the role of T follicular helper (Tfh) cells in this infection. Here, we sought to characterize circulating Tfh (cTfh) cells in chronic Chagas disease patients and to identify potential associations with disease severity in humans. cTfh cells were characterized by flow cytometry in freshly isolated PBMCs from 7 T. cruzi-infected asymptomatic patients (ASYMP), 5 patients with chronic chagasic dilated cardiomyopathy (CCC) and 8 healthy controls, using antibodies against chemokine receptors CXCR5, CXCR3, CCR6, and CCR7. Our results showed significant expansion of CD4+CD45RO+CXCR5+CCR6+ cells in ASYMP and CCC patients, along with a contraction of CD4+CD45RO+CXCR5+CXCR3-CCR6- (cTfh2) cells. ASYMP patients further exhibited decreased CD4+CD45RO+CXCR5+CXCR3+CCR6- (cTfh1) cells and expanded CD4+CD45RO+CXCR5+CXCR3-CCR6+ (cTfh17) cells while CCC patients exhibited significantly increased frequencies of CD4+CD45RO+CXCR5+CCR7+ cells. Linear regression analysis revealed a positive trend of CD4+CD45RO+CXCR5+CXCR3+CCR6+ (cTfh1/17) cells and negative trends of cTfh1 and cTfh2 cells as disease was more severe. There was no correlation between the frequencies of cTfh cells and circulating CD19+IgD-IgG+ cells or serum levels of T. cruzi-specific IgG. These results demonstrate that the cTfh compartment of humans chronically infected with T. cruzi comprises expanded CCR6-expressing cells and reduced cTfh2 cells. The association of discrete phenotypic changes in cTfh subsets with different clinical forms suggests the potential contribution of T follicular helper cells to Chagas heart disease progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: