Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 279 papers

CXCL11 promotes tumor progression by the biased use of the chemokine receptors CXCR3 and CXCR7.

  • Malte Puchert‎ et al.
  • Cytokine‎
  • 2020‎

The chemokine, CXCL11, is highly expressed in different solid tumors and controls tumor growth, metastasis, and lymphocyte infiltration. Although of potential clinical interest, it is presently unknown whether these tumor-promoting activities involve the CXCL11 receptors, CXCR3 and/or CXCR7. This issue is further intrigued by the fact that CXCR3 exists in the two functionally divergent splice variants, CXCR3A and CXCR3B, which exert pro- and anti-tumorigenic influences, respectively. To unravel the role of the various CXCL11 receptors in tumor progression, we have now defined their role in CXCL11-induced chemotaxis of the tumor cell lines, A549, C33-A, DLD-1, MDA-MB-231, and PC-3. CXCL11-induced cell migration was either sensitive to the CXCR3 antagonist, ÀMG487 (DLD-1), the CXCR7 antagonist, CCX771 (C33-A, PC-3), or both (A549, MDA-231). Moreover, in C33-A and PC-3 cells, but not in the other tumor cells, pharmacological activation and inhibition of CXCR3B prevented and potentiated CXCL11-induced cell migration, respectively. Both immunocytochemistry and Western blot analysis finally revealed that the observed cell type specific organization of the CXCL11 system is not the result of differences in expression levels or subcellular location of CXCL11 receptors. Our findings imply that the therapeutic use of CXCR3 antagonists in cancer patients requires exact knowledge of the organization of the CXCR3 system in the respective tumor.


Frontline Science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish.

  • Frida Sommer‎ et al.
  • Journal of leukocyte biology‎
  • 2020‎

The CXCR3-CXCL11 chemokine-signaling axis plays an essential role in infection and inflammation by orchestrating leukocyte trafficking in human and animal models, including zebrafish. Atypical chemokine receptors (ACKRs) play a fundamental regulatory function in signaling networks by shaping chemokine gradients through their ligand scavenging function, while being unable to signal in the classic G-protein-dependent manner. Two copies of the CXCR3 gene in zebrafish, cxcr3.2 and cxcr3.3, are expressed on macrophages and share a highly conserved ligand-binding site. However, Cxcr3.3 has structural characteristics of ACKRs indicative of a ligand-scavenging role. In contrast, we previously showed that Cxcr3.2 is an active CXCR3 receptor because it is required for macrophage motility and recruitment to sites of mycobacterial infection. In this study, we generated a cxcr3.3 CRISPR-mutant to functionally dissect the antagonistic interplay among the cxcr3 paralogs in the immune response. We observed that cxcr3.3 mutants are more susceptible to mycobacterial infection, whereas cxcr3.2 mutants are more resistant. Furthermore, macrophages in the cxcr3.3 mutant are more motile, show higher activation status, and are recruited more efficiently to sites of infection or injury. Our results suggest that Cxcr3.3 is an ACKR that regulates the activity of Cxcr3.2 by scavenging common ligands and that silencing the scavenging function of Cxcr3.3 results in an exacerbated Cxcr3.2 signaling. In human, splice variants of CXCR3 have antagonistic functions and CXCR3 ligands also interact with ACKRs. Therefore, in zebrafish, an analogous regulatory mechanism appears to have evolved after the cxcr3 gene duplication event, through diversification of conventional and atypical receptor variants.


Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

  • Terry G Coursey‎ et al.
  • PloS one‎
  • 2013‎

CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.


Common structural interactions between the receptors CXCR3, CXCR4 and CXCR7 complexed with their natural ligands, CXCL11 and CXCL12, by a modeling approach.

  • Susan Costantini‎ et al.
  • Cytokine‎
  • 2013‎

Chemokine receptor trio composed by CXCR3, CXCR4 and CXCR7 represents a hard and interesting challenge for cancer biology because these three receptors are found to be over-expressed in different cancers as well as to bind the same chemokines. In fact, CXCR4 interacts with CXCL12, CXCR7 not only with CXCL12 but also with CXCL11, that is a natural ligand for CXCR3. For these reasons, it seems necessary to define and to identify the structural determinants of CXCR3, CXCR4 and CXCR7 and their related physic-chemical properties that permit them to bind CXCL11 and CXCL12. Hence in this paper we show the modeling of CXCR7 and its complex with CXCL11 and CXCL12 compared to CXCR3/CXCL11 and CXCR4/CXCL12. Our results show that (i) CXCR3, CXCR4 and CXCR7 present similar trans-membrane helices and different conformations of N-terminal and C-terminal regions as well as of three extracellular loops, and (ii) the predominant interaction between the three receptors and the two chemokines are on hydrophobic and electrostatic basis. Moreover, our data confirm that CXCL12 binds to CXCR7 with higher affinity than to CXCR4. Methodologically, we can also conclude that our computational strategy is adequate to model correctly the interactions between these chemokines and their receptors; therefore, our models represent a good structural basis to design and develop peptides able to block contemporaneously CXCR3, CXCR4 and CXCR7 receptor trio.


Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model-In Vivo and In Vitro Study.

  • Anna Piotrowska‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.


Liver inflammation in a mouse model of Th1 hepatitis despite the absence of invariant NKT cells or the Th1 chemokine receptors CXCR3 and CCR5.

  • James G Cripps‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2012‎

The specific mechanisms that mediate CD4(+) T-cell-mediated liver injury have not been fully elucidated. CD4(+) invariant natural killer T (iNKT) cells are required for liver damage in some mouse models of hepatitis, while the chemokine receptors CXCR3 and CCR5 are considered dominant Th1 chemokine receptors involved in Th1 trafficking in inflammatory conditions. BALB/c-Tgfb1(-/-) mice spontaneously develop Th1 hepatitis. Here, we directly test the hypotheses that iNKT cells or the Th1-cell chemokine receptors CXCR3 and CCR5 are required for development of liver disease in Tgfb1(-/-) mice. Tgfb1(-/-) mouse livers exhibited significant increases in iNKT cells and in ligands for CXCR3 or CCR5. Tgfb1(-/-) mice were rendered deficient in iNKT cells, CXCR3, CCR5, or both CXCR3 and CCR5, by cross-breeding with appropriate knockout mice. Tgfb1(-/-) mice developed severe liver injury, even in the absence of functional CD1d/iNKT cells, CXCR3, CCR5, or both CXCR3 and CCR5. Liver CD4(+) T cells accumulated to high numbers, and spleen CD4(+) T-cell numbers declined, regardless of the functionality of the CXCR3/CCR5 response pathways. Similarly, dendritic cells and macrophages accumulated in Tgfb1(-/-) livers even when CXCR3 and CCR5 were knocked out. Th1-associated cytokines (IFN-γ, TNF-α, IL-2) and chemokines (CXCL9, CXCL10) were strongly overexpressed in Tgfb1(-/-) mice despite knockouts in CD1d, CXCR3, or CCR5. These studies indicate that the cellular and biochemical basis for CD4(+) T-cell-mediated injury in liver can be complex, with myriad pathways potentially involved.


Phosphorylation barcodes direct biased chemokine signaling at CXCR3.

  • Dylan S Eiger‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

G protein-coupled receptor (GPCR) biased agonism, the activation of some signaling pathways over others, is thought to largely be due to differential receptor phosphorylation, or "phosphorylation barcodes." At chemokine receptors, ligands act as "biased agonists" with complex signaling profiles, which contributes to the limited success in pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomic studies. Mutation of CXCR3 phosphosites altered β-arrestin conformation in cellular assays and was confirmed by molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes and lead to distinct physiological processes.


Conformational analysis of the human chemokine receptor CXCR3.

  • Raffaele Raucci‎ et al.
  • Molecular immunology‎
  • 2017‎

In the last years, some studies showed the patho-genetic role of CXCR3 bound to its ligands in many human inflammatory diseases and cancers. Thus, the blockage of the CXCR3 interaction site to its ligands is seen as a possible therapeutic target for the treatment of cancer. The presence of flexible regions in the chemokine receptors determines their capability to develop specific mechanisms of action. We have recently focused on the features of the N-terminal region of human CXCR3 free in solution, where we demonstrate the presence of numerous conformational ensembles, dynamically stabilized by H-bonds. Since up to now no structure was experimentally determined for CXCR3, we decided to approach the study of its conformational behavior by molecular dynamics simulations, in a lipid bilayer, surrounded of water, at neutral pH and 300K. Furthermore, we modeled the CXCR3/CXCL11 complex, where CXCL11 is one of its natural ligands. The aim of this work is to have a vision as realistic as possible in dynamic terms of the biological mechanism that drives the search for the ligand, its interaction and the formation of a stable complex between CXCR3 and CXCL11. Overall, our approach has been able to describe the structural events which dynamically characterize the molecular mechanisms involved in the binding of CXCR3 to CXCL11 and the critical role exerted by its N-terminal region in "hunting" and capturing the ligand.


Phosphorylation barcodes direct biased chemokine signaling at CXCR3.

  • Dylan S Eiger‎ et al.
  • Cell chemical biology‎
  • 2023‎

G protein-coupled receptor (GPCR)-biased agonism, selective activation of certain signaling pathways relative to others, is thought to be directed by differential GPCR phosphorylation "barcodes." At chemokine receptors, endogenous chemokines can act as "biased agonists", which may contribute to the limited success when pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomics studies. Mutation of CXCR3 phosphosites altered β-arrestin 2 conformation in cellular assays and was consistent with conformational changes observed in molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes, leading to distinct physiological processes.


Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes.

  • A O Watts‎ et al.
  • British journal of pharmacology‎
  • 2013‎

The C-X-C chemokine receptors 3 (CXCR3) and C-X-C chemokine receptors 4 (CXCR4) are involved in various autoimmune diseases and cancers. Small antagonists have previously been shown to cross-inhibit chemokine binding to CXCR4, CC chemokine receptors 2 (CCR2) and 5 (CCR5) heteromers. We investigated whether CXCR3 and CXCR4 can form heteromeric complexes and the binding characteristics of chemokines and small ligand compounds to these chemokine receptor heteromers.


CpG oligodeoxynucleotides directly induce CXCR3 chemokines in human B cells.

  • Atsushi Kato‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

CpG oligodeoxynucleotides (CpG ODN) are known to elicit Th1 immune responses via TLR9. However, the precise mechanisms through which B cells are involved in this phenomenon are not fully understood. We investigated the effect of CpG ODN on the induction of Th1-chemoattractant CXCR3 chemokines, IP-10, Mig, and I-TAC, in B cells. Cells from the RPMI 8226 human B cell line and human peripheral B cells were stimulated with three distinct classes of CpG ODN. As a result, CXCR3 chemokines were strongly up-regulated by CpG-B and CpG-C, but only weakly by CpG-A. Though CXCR3 chemokines are known to be induced by IFNs, blocking mAbs against IFN receptors did not inhibit their induction by CpG-B. Induction of CXCR3 chemokines was blocked by two NF-kappaB inhibitors and a p38 inhibitor. These results strongly suggest that CXCR3 chemokines are directly induced by CpG ODN via NF-kappaB- and p38-dependent pathways in human B cells.


Requirement of the chemokine receptor CXCR3 for acute allograft rejection.

  • W W Hancock‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Chemokines provide signals for activation and recruitment of effector cells into sites of inflammation, acting via specific G protein-coupled receptors. However, in vitro data demonstrating the presence of multiple ligands for a given chemokine receptor, and often multiple receptors for a given chemokine, have led to concerns of biologic redundancy. Here we show that acute cardiac allograft rejection is accompanied by progressive intragraft production of the chemokines interferon (IFN)-gamma-inducible protein of 10 kD (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T cell alpha chemoattractant (I-TAC), and by infiltration of activated T cells bearing the corresponding chemokine receptor, CXCR3. We used three in vivo models to demonstrate a role for CXCR3 in the development of transplant rejection. First, CXCR3-deficient (CXCR3(-/)-) mice showed profound resistance to development of acute allograft rejection. Second, CXCR3(-/)- allograft recipients treated with a brief, subtherapeutic course of cyclosporin A maintained their allografts permanently and without evidence of chronic rejection. Third, CXCR(+/+) mice treated with an anti-CXCR3 monoclonal antibody showed prolongation of allograft survival, even if begun after the onset of rejection. Taken in conjunction with our findings of CXCR3 expression in rejecting human cardiac allografts, we conclude that CXCR3 plays a key role in T cell activation, recruitment, and allograft destruction.


Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism.

  • B Cambien‎ et al.
  • British journal of cancer‎
  • 2009‎

Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Recent research has indicated that CXCR3/chemokines interactions that orchestrate haematopoetic cell movement are implicated in the metastatic process of malignant tumours, including that of CRC cells to lymph nodes. To date, however, the contribution of CXCR3 to liver and lung metastasis in CRC has not been addressed. To determine whether CXCR3 receptors regulate malignancy-related properties of CRC cells, we have used CXCR3-expressing CRC cell lines of human (HT29 cells) and murine (C26 cells) origins that enable the development of liver and lung metastases when injected into immunodeficient and immunocompetent mice, respectively, and assessed the effect of CXCR3 blockade using AMG487, a small molecular weight antagonist. In vitro, activation of CXCR3 on human and mouse CRC cells by its cognate ligands induced migratory and growth responses, both activities being abrogated by AMG487. In vivo, systemic CXCR3 antagonism by preventive or curative treatments with AMG487 markedly inhibited the implantation and the growth of human and mouse CRC cells within lung without affecting that in the liver. In addition, we measured increased levels of CXCR3 and ligands expression within lung nodules compared with liver tumours. Altogether, our findings indicate that activation of CXCR3 receptors by its cognate ligands facilitates the implantation and the progression of CRC cells within lung tissues and that inhibition of this axis decreases pulmonary metastasis of CRC in two murine tumour models.


Location bias contributes to functionally selective responses of biased CXCR3 agonists.

  • Dylan Scott Eiger‎ et al.
  • Nature communications‎
  • 2022‎

Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.


Reduced CD4+T Cell CXCR3 Expression in Patients With Allergic Rhinitis.

  • Xiaofeng Yu‎ et al.
  • Frontiers in immunology‎
  • 2020‎

While T cells are considered to play a primary role in IgE-mediated atopic diseases, little is known about the systemic variations of T cell subsets from patients with allergic rhinitis (AR). To elucidate the characteristics of peripheral T cells, we analyzed natural killer, B cell, and T cell populations, performed T cell subset construction, and assessed chemokine receptor and associated serum cytokine expression in 25 AR patients and 20 healthy controls. Our results revealed increased levels of CD4+T cells, serum interleukin (IL)-10, IL-6, and interferon (IFN)-γ, and reduced Th1 and Th17 subsets, identified by their chemokine receptors, in AR patients. These results suggest a systemic activation of T cell responses in AR. We further demonstrated that AR patients exhibit significantly reduced CD4+T cell CXCR3 expression, especially in patients with moderate-severe disease severity, demonstrating that CXCR3 is a potential key molecule that hinders the Th1/Th2 balance in AR pathology. Overall, systemic T cell activation occurred in AR patients and CXCR3 dramatically decreased in CD4+T cells, which may ultimately be used as a potential disease and/or therapeutic target.


Pro-tumoural CXCL10/CXCR3-A autocrine loop in invasive mucinous lung adenocarcinoma.

  • Michaël Duruisseaux‎ et al.
  • ERJ open research‎
  • 2017‎

Invasive mucinous adenocarcinoma (IMA) is a mucinous variant of lepidic predominant lung adenocarcinoma (LPA) and associated with a worse prognosis. We postulated that cytokine expression would enable us to differentiate IMA from LPA in terms of prognosis and acquisition of pro-tumoural capacities. A 30-cytokine panel was assessed in bronchoalveolar lavage fluids (BALF) from IMA (n=38), LPA (n=25) and control samples (n=7). We investigated the expression of differentially expressed cytokines and splice variants of their receptors in surgical samples. The presence of EGFR and KRAS mutations were determined. We also examined the expression of cytokines and splice variants of their receptors in different cell lines, exploring their functional impact on signalling pathways, proliferation and migration. Only C-X-C motif chemokine 10 (CXCL10) was differentially expressed, namely overexpressed in IMA BALF compared with LPA. CXCL10 overexpression in BALF was linked to a worse prognosis. In surgical samples, CXCL10 and its receptor C-X-C motif chemokine receptor 3 (CXCR3) were overexpressed in IMA compared to LPA. A pro-tumoural CXCR3-A splice variant was overexpressed in IMA, suggesting a CXCL10/CXCR3-A autocrine loop in IMA. CXCL10 and CXCR3 expression were not correlated with EGFR or KRAS status. CXCL10 up-regulated CXCR3-A expression, Erk1/2 phosphorylation and enhanced migration in the mucinous H2228 cell line. CXCL10/CXCR3-A may play a pro-tumoural role in IMA via an autocrine mechanism.


Insight into structural requirements for selective and/or dual CXCR3 and CXCR4 allosteric modulators.

  • Anja Kolarič‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors.


TNF-α augments CXCR2 and CXCR3 to promote progression of renal cell carcinoma.

  • Kuang-Hui Sun‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Within the tumour microenvironment, a complex network of chemokines and their receptors affects the initiation and progression of tumours. The higher levels of tumour necrosis factor-alpha (TNF-α) are associated with tumour progression and an anti-TNF-α monoclonal antibody has been used successfully to treat patients with renal cell carcinoma (RCC). However, the role of chemokines and their receptors in the TNF-α-promoted progression of RCC remains unclear. In this study, TNF-α was found to enhance the migration, invasion and epithelial-mesenchymal transition (EMT) of RCC cells. To further investigate the molecular mechanism of TNF-α on the progression of RCC, reverse transcription and quantitative PCR was used to screen chemokines and chemokine receptors that were associated with tumorigenesis. The results showed that TNF-α significantly increased the expressions of CXCR2 and CXCR3 and their related ligands in RCC cells. Subsequently, we used a lentiviral shRNA system to knockdown the expression of CXCR2 and/or CXCR3 in RCC cells. CXCR2 and CXCR3 silencing inhibited the induction of Slug and ZEB-1 with TNF-α treatment of RCC cells. In addition, the knockdown of both CXCR2 and CXCR3 resulted in a greater decrease in cell migration, invasion and clonogenic ability compared with either CXCR2 or CXCR3 knockdown alone. Moreover, CXCR2 and CXCR3 silencing significantly reduced the sphere-forming ability of RCC cells. High expression levels of CXCR2 and CXCR3 in cancer tissues correlated with tumour progression of renal cell carcinoma. These findings suggest that TNF-α augments CXCR2 and CXCR3 to promote the progression of renal cell carcinoma leading to a poor prognosis.


Autoantibodies against C5aR1, C3aR1, CXCR3, and CXCR4 are decreased in primary Sjogren's syndrome.

  • Xiaoyang Yue‎ et al.
  • Molecular immunology‎
  • 2021‎

Networks formed of numerous autoantibodies (aabs) directed against G-protein coupled receptors (GPCR) have been suggested to play important role in autoimmune disorders. In present study, we aimed to evaluate the association between anti-GPCR antibodies and primary Sjogren's syndrome (pSS) to determine the potential pathogenic factors.


CXCR3 from chemokine receptor family correlates with immune infiltration and predicts poor survival in osteosarcoma.

  • Yin Tang‎ et al.
  • Bioscience reports‎
  • 2019‎

Chemokine receptors have a crucial role in regulating tumor mediating immunity and are also implicated in the prognosis of some cancers. Here, the association between CXC chemokine receptors (CXCR2-5) and prognosis in osteosarcoma was studied.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: