Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 312 papers

Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

  • Cédric de Poorter‎ et al.
  • PloS one‎
  • 2013‎

Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.


Systematic Assessment of Chemokine Signaling at Chemokine Receptors CCR4, CCR7 and CCR10.

  • Herman D Lim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Chemokines interact with chemokine receptors in a promiscuous network, such that each receptor can be activated by multiple chemokines. Moreover, different chemokines have been reported to preferentially activate different signalling pathways via the same receptor, a phenomenon known as biased agonism. The human CC chemokine receptors (CCRs) CCR4, CCR7 and CCR10 play important roles in T cell trafficking and have been reported to display biased agonism. To systematically characterize these effects, we analysed G protein- and β-arrestin-mediated signal transduction resulting from stimulation of these receptors by each of their cognate chemokine ligands within the same cellular background. Although the chemokines did not elicit ligand-biased agonism, the three receptors exhibited different arrays of signaling outcomes. Stimulation of CCR4 by either CC chemokine ligand 17 (CCL17) or CCL22 induced β-arrestin recruitment but not G protein-mediated signaling, suggesting that CCR4 has the potential to act as a scavenger receptor. At CCR7, both CCL19 and CCL21 stimulated G protein signaling and β-arrestin recruitment, with CCL19 consistently displaying higher potency. At CCR10, CCL27 and CCL28(4-108) stimulated both G protein signaling and β-arrestin recruitment, whereas CCL28(1-108) was inactive, suggesting that CCL28(4-108) is the biologically relevant form of this chemokine. These comparisons emphasize the intrinsic abilities of different receptors to couple with different downstream signaling pathways. Comparison of these results with previous studies indicates that differential agonism at these receptors may be highly dependent on the cellular context.


Differential between protein and mRNA expression of CCR7 and SSTR5 receptors in Crohn's disease patients.

  • Nathalie Taquet‎ et al.
  • Mediators of inflammation‎
  • 2009‎

Crohn's disease (CD) is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 +/- 71 times in CD peripheral blood mononuclear cells (PBMCs). Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 +/- 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis.


Effect of chemokine receptors CCR7 on disseminated behavior of human T cell lymphoma: clinical and experimental study.

  • Jing Yang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2011‎

The expression of chemokine receptors CCR7 has been studied in relation to tumor dissemination and poor prognosis in a limited number of cancers. No such studies have been done on CCR7 expression in non-Hodgkin's lymphoma (T-NHL). Our aim in this paper is to investigate the association between CCR7 expression and progression and prognosis of T-NHL.


The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo- and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7.

  • Haruko Hayasaka‎ et al.
  • PloS one‎
  • 2015‎

During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.


CD45RA+CCR7- CD8 T cells lacking co-stimulatory receptors demonstrate enhanced frequency in peripheral blood of NSCLC patients responding to nivolumab.

  • Andre Kunert‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2019‎

Checkpoint inhibitors have become standard care of treatment for non-small cell lung cancer (NSCLC), yet only a limited fraction of patients experiences durable clinical benefit, highlighting the need for markers to stratify patient populations.


CCR7-specific migration to CCL19 and CCL21 is induced by PGE(2) stimulation in human monocytes: Involvement of EP(2)/EP(4) receptors activation.

  • Sandra C Côté‎ et al.
  • Molecular immunology‎
  • 2009‎

The recent demonstration that newly recruited monocytes do not die at the site of inflammation, but migrate to draining lymph nodes, raises the question on the mechanism involved in this process. In this study, we demonstrate for the first time that prostaglandin E(2) (PGE(2)) regulates the expression and the activity of CCR7 in human blood-isolated monocytes as well as in the MONO-MAC-1 cell lineage. PGE(2) induces intracellular cAMP formation through engagement of the E-prostanoid 2/E-prostanoid 4 (EP(2)/EP(4)) receptors present on monocytes. Migration to chemokines CCL19 and CCL21 in the PGE(2)-stimulated monocytes is mediated through the augmentation of cAMP concentration and furthermore, the cAMP/PKA pathway appears to act as the major inducer of CCR7 transcription in MONO-MAC-1. While p38 MAPK was induced by PGE(2), we observed that PGE(2) can downregulate p42/p44 MAPK phosphorylation. At the transcription level, inhibition of p38 MAPK inhibits CCR7 mRNA expression. Finally, we demonstrated that transcription factors CREB-1 and C/EBPalpha and C/EBPbeta are translocated to the nucleus following PGE(2) stimulation and bind the potent CCR7 promoter region. Our findings may have important implication for HIV-1 migration to the lymph nodes since macrophages and monocytes, particularly CD16 positive subset, are susceptible to HIV-1 infection.


CXCR4-CCR7 Heterodimerization Is a Driver of Breast Cancer Progression.

  • Valentina Poltavets‎ et al.
  • Life (Basel, Switzerland)‎
  • 2021‎

Metastatic breast cancer has one of the highest mortality rates among women in western society. Chemokine receptors CXCR4 and CCR7 have been shown to be linked to the metastatic spread of breast cancer, however, their precise function and underlying molecular pathways leading to the acquisition of the pro-metastatic properties remain poorly understood. We demonstrate here that the CXCR4 and CCR7 receptor ligands, CXCL12 and CCL19, cooperatively bind and selectively elicit synergistic signalling responses in invasive breast cancer cell lines as well as primary mammary human tumour cells. Furthermore, for the first time, we have documented the presence of CXCR4-CCR7 heterodimers in advanced primary mammary mouse and human tumours where number of CXCR4-CCR7 complexes directly correlate with the severity of the disease. The functional significance of the CXCR4-CCR7 association was also demonstrated when their forced heterodimerization led to the acquisition of invasive phenotype in non-metastatic breast cancer cells. Taken together, our data establish the CXCR4-CCR7 receptor complex as a new functional unit, which is responsible for the acquisition of breast cancer cell metastatic phenotype and which may serve as a novel biomarker for invasive mammary tumours.


Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes.

  • Menna R Clatworthy‎ et al.
  • Nature medicine‎
  • 2014‎

Antibodies are critical for defense against a variety of microbes, but they may also be pathogenic in some autoimmune diseases. Many effector functions of antibodies are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs)-important antigen-presenting cells that play a central role in inducing antigen-specific tolerance or immunity. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via the lymphatics to present antigen to T cells. Here we demonstrate that FcγR engagement by IgG immune complexes (ICs) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated mouse and human DCs showed greater directional migration in a chemokine (C-C) ligand 19 (CCL19) gradient and increased chemokine (C-C) receptor 7 (CCR7) expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilization. We confirmed that dermal DC migration to lymph nodes depended on CCR7 and increased in the absence of the inhibitory receptor FcγRIIB. These observations have relevance to autoimmunity because autoantibody-containing serum from humans with systemic lupus erythematosus (SLE) and from a mouse model of SLE also increased dermal DC migration in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localization of autoantigen-bearing DCs.


Fluorescently Tagged CCL19 and CCL21 to Monitor CCR7 and ACKR4 Functions.

  • Vladimir Purvanov‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Chemokines are essential guidance cues orchestrating cell migration in health and disease. Cognate chemokine receptors sense chemokine gradients over short distances to coordinate directional cell locomotion. The chemokines CCL19 and CCL21 are essential for recruiting CCR7-expressing dendritic cells bearing pathogen-derived antigens and lymphocytes to lymph nodes, where the two cell types meet to launch an adaptive immune response against the invading pathogen. CCR7-expressing cancer cells are also recruited by CCL19 and CCL21 to metastasize in lymphoid organs. In contrast, atypical chemokine receptors (ACKRs) do not transmit signals required for cell locomotion but scavenge chemokines. ACKR4 is crucial for internalizing and degrading CCL19 and CCL21 to establish local gradients, which are sensed by CCR7-expressing cells. Here, we describe the production of fluorescently tagged chemokines by fusing CCL19 and CCL21 to monomeric red fluorescent protein (mRFP). We show that purified CCL19-mRFP and CCL21-mRFP are versatile and powerful tools to study CCR7 and ACKR4 functions, such as receptor trafficking and chemokine scavenging, in a spatiotemporal fashion. We demonstrate that fluorescently tagged CCL19 and CCL21 permit the visualization and quantification of chemokine gradients in real time, while CCR7-expressing leukocytes and cancer cells sense the guidance cues and migrate along the chemokine gradients.


TLR4 induces CCR7-dependent monocytes transmigration through the blood-brain barrier.

  • Alexandre Paradis‎ et al.
  • Journal of neuroimmunology‎
  • 2016‎

In this study, we examined whether bacterial pathogen-associated molecular patterns recognized by toll-like receptors (TLRs) can modify the CCR7-dependent migration of human monocytes. MonoMac-1 (MM-1) cells and freshly isolated human monocytes were cultivated in the presence of agonists for TLR4 (which senses lipopolysaccharides from gram-negative bacteria), TLR1/2 (which senses peptidoglycan from gram-positive bacteria), and TLR9 (which recognizes bacterial DNA rich in unmethylated CpG DNA). CCR7 mRNA transcription was measured using quantitative reverse transcription polymerase chain reaction and protein expression was examined using flow cytometry. CCR7 function was monitored using migration and transmigration assays in response to CCL19/CCL21, which are natural ligands for CCR7. Our results show that TLR4 strongly increases monocyte migratory capacity in response to CCL19 in chemotaxis and transmigration assays in a model that mimics the human blood-brain barrier, whereas TLR1/2 and 9 have no effect. Examination of monocyte migration in response to TLRs that are activated by bacterial components would contribute to understanding the excessive monocyte migration that characterizes the pathogenesis of bacterial infections and/or neuroinflammatory diseases.


Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator.

  • Xun Wu‎ et al.
  • Journal of immunological methods‎
  • 2015‎

T lymphocyte migration is crucial for adaptive immunity. Manipulation of signaling molecules controlling cell migration combined with in-vitro cell migration analysis provides a powerful research approach. Microfluidic devices, which can precisely configure chemoattractant gradients and allow quantitative single cell analysis, have been increasingly applied to cell migration and chemotaxis studies. However, there are a very limited number of published studies involving microfluidic migration analysis of genetically manipulated immune cells. In this study, we describe a simple microfluidic method for quantitative analysis of T cells expressing transfected chemokine receptors and other cell migration signaling probes. Using this method, we demonstrated chemotaxis of Jurkat transfectants expressing wild-type or C-terminus mutated CCR7 within a gradient of chemokine CCL19, and characterized the difference in transfectant migration mediated by wild-type and mutant CCR7. The EGFP-tagged CCR7 allows identification of CCR7-expressing transfectants in cell migration analysis and microscopy assessment of CCR7 dynamics. Collectively, our study demonstrated the effective use of the microfluidic method for studying CCR7 mediated T cell transfectant migration. We envision this developed method will provide a useful platform to functionally test various signaling mechanisms at the cell migration level.


Differential CCR7 Targeting in Dendritic Cells by Three Naturally Occurring CC-Chemokines.

  • Gertrud M Hjortø‎ et al.
  • Frontiers in immunology‎
  • 2016‎

The CCR7 ligands CCL19 and CCL21 are increasingly recognized as functionally different (biased). Using mature human dendritic cells (DCs), we show that CCL19 is more potent than CCL21 in inducing 3D chemotaxis. Intriguingly, CCL21 induces prolonged and more efficient ERK1/2 activation compared with CCL19 and a C-terminal truncated (tailless) CCL21 in DCs. In contrast, tailless-CCL21 displays increased potency in DC chemotaxis compared with native CCL21. Using a CCL21-specific antibody, we show that CCL21, but not tailless-CCL21, accumulates at the cell surface. In addition, removal of sialic acid from the cell surface by neuraminidase treatment impairs ERK1/2 activation by CCL21, but not by CCL19 or tailless-CCL21. Using standard laboratory cell lines, we observe low potency of both CCL21 and tailless-CCL21 in G protein activation and β-arrestin recruitment compared with CCL19, indicating that the tail itself does not improve receptor interaction. Chemokines interact with their receptors in a stepwise manner with ultimate docking of their N-terminus into the main binding pocket. Employing site-directed mutagenesis we identify residues in this pocket of selective CCL21 importance. We also identify a molecular switch in the top of TM7 important for keeping CCR7 in an inactive conformation (Tyr312), as introduction of the chemokine receptor-conserved Glu (or Ala) induces high constitutive activity. Summarized, we show that the interaction of the tail of CCL21 with polysialic acid is needed for strong ERK signaling, whereas it impairs CCL21-mediated chemotaxis and has no impact on receptor docking consistent with the current model of chemokine:receptor interaction. This indicates that future selective pharmacological targeting of CCL19 versus CCL21 should focus on a differential targeting of the main receptor pocket, while selective targeting of tailless-CCL21 versus CCL21 and CCL19 requires targeting of the glycosaminoglycan (GAG) interaction.


The absence of CCR7 results in dysregulated monocyte migration and immunosuppression facilitating chronic cutaneous leishmaniasis.

  • Jessica C Kling‎ et al.
  • PloS one‎
  • 2013‎

The protozoan parasite Leishmania major causes cutaneous lesions to develop at the site of infection, which are resolved with a strong Th1 immune response in resistant hosts, such as C57BL/6 mice. In contrast, the lesions ulcerate in susceptible hosts which display a Th2 response, such as BALB/c mice. The migration of cells in the immune response to L. major is regulated by chemokines and their receptors. The chemokine receptor CCR7 is expressed on activated DCs and naïve T cells, allowing them to migrate to the correct micro-anatomical positions within secondary lymphoid organs. While there have been many studies on the function of CCR7 during homeostasis or using model antigens, there are very few studies on the role of CCR7 during infection. In this study, we show that B6.CCR7(-/-) mice were unable to resolve the lesion and developed a chronic disease. The composition of the local infiltrate at the lesion was significantly skewed toward neutrophils while the proportion of CCR2(+) monocytes was reduced. Furthermore, a greater percentage of CCR2(+) monocytes expressed CCR7 in the footpad than in the lymph node or spleen of B6.WT mice. We also found an increased percentage of regulatory T cells in the draining lymph node of B6.CCR7(-/-) mice throughout infection. Additionally, the cytokine milieu of the lymph node showed a Th2 bias, rather than the resistant Th1 phenotype. This data shows that CCR7 is required for a protective immune response to intracellular L. major infection.


Nociception-Dependent CCL21 Induces Dorsal Root Ganglia Axonal Growth via CCR7-ERK Activation.

  • Francina Mesquida-Veny‎ et al.
  • Frontiers in immunology‎
  • 2022‎

While chemokines were originally described for their ability to induce cell migration, many studies show how these proteins also take part in many other cell functions, acting as adaptable messengers in the communication between a diversity of cell types. In the nervous system, chemokines participate both in physiological and pathological processes, and while their expression is often described on glial and immune cells, growing evidence describes the expression of chemokines and their receptors in neurons, highlighting their potential in auto- and paracrine signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and in turn their role in axonal growth. We found that stimulating TRPV1+ nociceptors induces a transient increase in CCL21. Interestingly we also found that CCL21 enhances neurite growth of large diameter proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21 receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP, triggering actin filament ramification in the growth cone, resulting in increased axonal growth.


Activation of CCL21-GPR174/CCR7 on cardiac fibroblasts underlies myocardial ischemia/reperfusion injury.

  • Xiao-Wen Meng‎ et al.
  • Frontiers in genetics‎
  • 2022‎

Background: The mechanisms underlying myocardial ischemia/reperfusion (I/R) injury are not fully understood. This study aims to explore key candidate genes and potential therapeutic targets for treatment of myocardial I/R injury. Methods: The transcriptional profiles of ventricular myocardium during cardiac arrest, ischemia, and reperfusion were obtained from the Gene Expression Omnibus database. Based on the transcriptional data of GSE6381, functional pathway and process enrichment analyses, protein-protein interaction network, and gene set enrichment analyses were conducted. In the animal experiments, we established the myocardial I/R injury model in mice. We validated the mRNA and protein expression of the key genes using the qPCR and western blots. We further assessed the expression and localization of CCL21 and its receptors using immunofluorescence staining experiments. Results: The microarray analyses identified five key genes (CCL21, XCR1, CXCL13, EDN1, and CASR). Myocardial I/R process in mice resulted in significant myocardial infraction, histological damage, and myocardial apoptosis. The results of qPCR and western blots showed that the expression of CCL21 and CXCL13 were increased following myocardial I/R injury in mice. Furthermore, the immunofluorescence staining results revealed that the expression of GPR174/CCR7 (CCL21 receptors), but not CXCR5 (CXCL13 receptor), was elevated following myocardial I/R injury. Moreover, the activated CCL21-GPR174/CCR7 signaling was located on the cardiac fibroblasts of the myocardium with I/R injury. Conclusion: This study revealed several key factors underlying myocardial I/R injury. Of these, the activation of CCL21-GPR174/CCR7 signaling on cardiac fibroblasts was highlighted, which provides potential therapeutic targets for cardioprotection.


CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice.

  • Jeb S Orr‎ et al.
  • Physiological reports‎
  • 2016‎

The mechanism by which macrophages and other immune cells accumulate in adipose tissue (AT) has been an area of intense investigation over the past decade. Several different chemokines and their cognate receptors have been studied for their role as chemoattractants in promoting recruitment of immune cells to AT However, it is also possible that chemoattractants known to promote clearance of immune cells from tissues to regional lymph nodes might be a critical component to overall AT immune homeostasis. In this study, we evaluated whether CCR7 influences AT macrophage (ATM) or T-cell (ATT) accumulation. CCR7-/- and littermate wild-type (WT) mice were placed on low-fat diet (LFD) or high-fat diet (HFD) for 16 weeks. CCR7 deficiency did not impact HFD-induced weight gain, hepatic steatosis, or glucose intolerance. Although lean CCR7-/- mice had an increased proportion of alternatively activated ATMs, there were no differences in ATM accumulation or polarization between HFD-fed CCR7-/- mice and their WT counterparts. However, CCR7 deficiency did lead to the preferential accumulation of CD8+ ATT cells, which was further exacerbated by HFD feeding. Finally, expression of inflammatory cytokines/chemokines, such as Tnf, Il6, Il1β, Ccl2, and Ccl3, was equally elevated in AT by HFD feeding in CCR7-/- and WT mice, while Ifng and Il18 were elevated by HFD feeding in CCR7-/- but not in WT mice. Together, these data suggest that CCR7 plays a role in CD8+ATT cell egress, but does not influence ATM accumulation or the metabolic impact of diet-induced obesity.


CCR4 and CCR7 differentially regulate thymocyte localization with distinct outcomes for central tolerance.

  • Yu Li‎ et al.
  • eLife‎
  • 2023‎

Central tolerance ensures autoreactive T cells are eliminated or diverted to the regulatory T cell lineage, thus preventing autoimmunity. To undergo central tolerance, thymocytes must enter the medulla to test their T-cell receptors (TCRs) for autoreactivity against the diverse self-antigens displayed by antigen-presenting cells (APCs). While CCR7 is known to promote thymocyte medullary entry and negative selection, our previous studies implicate CCR4 in these processes, raising the question of whether CCR4 and CCR7 play distinct or redundant roles in central tolerance. Here, synchronized positive selection assays, two-photon time-lapse microscopy, and quantification of TCR-signaled apoptotic thymocytes, demonstrate that CCR4 and CCR7 promote medullary accumulation and central tolerance of distinct post-positive selection thymocyte subsets in mice. CCR4 is upregulated within hours of positive selection signaling and promotes medullary entry and clonal deletion of immature post-positive selection thymocytes. In contrast, CCR7 is expressed several days later and is required for medullary localization and negative selection of mature thymocytes. In addition, CCR4 and CCR7 differentially enforce self-tolerance, with CCR4 enforcing tolerance to self-antigens presented by activated APCs, which express CCR4 ligands. Our findings show that CCR7 expression is not synonymous with medullary localization and support a revised model of central tolerance in which CCR4 and CCR7 promote early and late stages of negative selection, respectively, via interactions with distinct APC subsets.


Coexpression of CCR7 and CXCR4 During B Cell Development Controls CXCR4 Responsiveness and Bone Marrow Homing.

  • Saria Mcheik‎ et al.
  • Frontiers in immunology‎
  • 2019‎

The CXCL12-CXCR4 axis plays a key role in the retention of stem cells and progenitors in dedicated bone marrow niches. It is well-known that CXCR4 responsiveness in B lymphocytes decreases dramatically during the final stages of their development in the bone marrow. However, the molecular mechanism underlying this regulation and whether it plays a role in B-cell homeostasis remain unknown. In the present study, we show that the differentiation of pre-B cells into immature and mature B cells is accompanied by modifications to the relative expression of chemokine receptors, with a two-fold downregulation of CXCR4 and upregulation of CCR7. We demonstrate that expression of CCR7 in B cells is involved in the selective inactivation of CXCR4, and that mature B cells from CCR7-/- mice display higher responsiveness to CXCL12 and improved retention in the bone marrow. We also provide molecular evidence supporting a model in which upregulation of CCR7 favors the formation of CXCR4-CCR7 heteromers, wherein CXCR4 is selectively impaired in its ability to activate certain G-protein complexes. Collectively, our results demonstrate that CCR7 behaves as a novel selective endogenous allosteric modulator of CXCR4.


Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration.

  • Mark A Hauser‎ et al.
  • Immunity‎
  • 2016‎

Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through classical G protein-dependent signaling but also by integrating an oligomer-dependent Src kinase signaling pathway. Efficient CCR7-driven migration depends on a hydrophobic oligomerization interface near the conserved NPXXY motif of G protein-coupled receptors as shown by mutagenesis screen and a CCR7-SNP demonstrating super-oligomer characteristics leading to enhanced Src activity and superior chemotaxis. Furthermore, Src phosphorylates oligomeric CCR7, thereby creating a docking site for SH2-domain-bearing signaling molecules. Finally, we identified CCL21-biased signaling that involved the phosphatase SHP2 to control efficient cell migration. Collectively, our data showed that CCR7 oligomers serve as molecular hubs regulating distinct signaling pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: