Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 81 papers

Evolution of Brain-Expressed Biogenic Amine Receptors into Olfactory Trace Amine-Associated Receptors.

  • Lingna Guo‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.


Comprehensive, structurally-informed alignment and phylogeny of vertebrate biogenic amine receptors.

  • Stephanie J Spielman‎ et al.
  • PeerJ‎
  • 2015‎

Biogenic amine receptors play critical roles in regulating behavior and physiology in both vertebrates and invertebrates, particularly within the central nervous system. Members of the G-protein coupled receptor (GPCR) family, these receptors interact with endogenous bioamine ligands such as dopamine, serotonin, and epinephrine, and are targeted by a wide array of pharmaceuticals. Despite the clear clinical and biological importance of these receptors, their evolutionary history remains poorly characterized. In particular, the relationships among biogenic amine receptors and any specific evolutionary constraints acting within distinct receptor subtypes are largely unknown. To advance and facilitate studies in this receptor family, we have constructed a comprehensive, high-quality sequence alignment of vertebrate biogenic amine receptors. In particular, we have integrated a traditional multiple sequence approach with robust structural domain predictions to ensure that alignment columns accurately capture the highly-conserved GPCR structural domains, and we demonstrate how ignoring structural information produces spurious inferences of homology. Using this alignment, we have constructed a structurally-partitioned maximum-likelihood phylogeny from which we deduce novel biogenic amine receptor relationships and uncover previously unrecognized lineage-specific receptor clades. Moreover, we find that roughly 1% of the 3039 sequences in our final alignment are either misannotated or unclassified, and we propose updated classifications for these receptors. We release our comprehensive alignment and its corresponding phylogeny as a resource for future research into the evolution and diversification of biogenic amine receptors.


Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site.

  • Liang Jia‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.


LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system.

  • Ephraim L Tsalik‎ et al.
  • Developmental biology‎
  • 2003‎

Biogenic amines regulate a variety of behaviors. Their functions are predominantly mediated through G-protein-coupled 7-transmembrane domain receptors (GPCR), 16 of which are predicted to exist in the genome sequence of the nematode Caenorhabditis elegans. We describe here the expression pattern of several of these aminergic receptors, including two serotonin receptors (ser-1 and ser-4), one tyramine receptor (ser-2), and two dopamine receptors (dop-1 and dop-2). Moreover, we describe distinct but partially overlapping expression patterns of different splice forms of the ser-2 tyramine receptor locus. We find that each of the aminergic receptor genes is expressed in restricted regions of the nervous system and that many of them reveal significant overlap with the expression of regulatory factors of the LIM homeobox (Lhx) gene family. We demonstrate that the expression of several of the biogenic amine receptors is abrogated in specific cell types in Lhx gene mutants, thus establishing a role for these Lhx genes in regulating aspects of neurotransmission. We extend these findings with other cell fate markers and show that the lim-4 Lhx gene is required for several but not all aspects of RID motor neuron differentiation and that the lim-6 Lhx gene is required for specific aspects of RIS interneuron differentiation. We also use aminergic receptor gfp reporter fusions as tools to visualize the anatomy of specific neurons in Lhx mutant backgrounds and find that the development of the elaborate dendritic branching pattern of the PVD harsh touch sensory neuron requires the mec-3 Lhx gene. Lastly, we analyze a mutant allele of the ser-2 tyramine receptor, a target of the ttx-3 Lhx gene in the AIY interneuron class. ser-2 mutants display none of the defects previously shown to be associated with loss of AIY function.


Multiple Biogenic Amine Receptor Types Modulate Spider, Cupiennius salei, Mechanosensory Neurons.

  • Vaishnavi Sukumar‎ et al.
  • Frontiers in physiology‎
  • 2018‎

The biogenic amines octopamine (OA), tyramine (TA), dopamine (DA), serotonin (5-HT), and histamine (HA) affect diverse physiological and behavioral processes in invertebrates, but recent findings indicate that an additional adrenergic system exists in at least some invertebrates. Transcriptome analysis has made it possible to identify biogenic amine receptor genes in a wide variety of species whose genomes have not yet been sequenced. This approach provides new sequences for research into the evolutionary history of biogenic amine receptors and allows them to be studied in experimentally accessible animal models. The Central American Wandering spider, Cupiennius salei, is an experimental model for neurophysiological, developmental and behavioral research. We identified ten different biogenic amine receptors in C. salei transcriptomes. Phylogenetic analysis indicated that, in addition to the typical receptors for OA, TA, DA, and 5-HT in protostome invertebrates, spiders also have α1- and α2-adrenergic receptors, but lack TAR2 receptors and one invertebrate specific DA receptor type. In situ hybridization revealed four types of biogenic amine receptors expressed in C. salei mechanosensory neurons. We used intracellular electrophysiological experiments and pharmacological tools to determine how each receptor type contributes to modulation of these neurons. We show that arachnids have similar groups of biogenic amine receptors to other protostome invertebrates, but they lack two clades. We also clarify that arachnids and many other invertebrates have both α1- and α2-adrenergic, likely OA receptors. Our results indicate that in addition to an OAβ-receptor that regulates rapid and large changes in sensitivity via a Gs-protein activating a cAMP mediated pathway, the C. salei mechanosensory neurons have a constitutively active TAR1 and/or α2-adrenergic receptor type that adjusts the baseline sensitivity to a level appropriate for the behavioral state of the animal by a Gq-protein that mobilizes Ca2+.


Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning.

  • Julia Morud‎ et al.
  • Current biology : CB‎
  • 2021‎

Pentameric ligand-gated ion channels (LGICs) play conserved, critical roles in both excitatory and inhibitory synaptic transmission and can be activated by diverse neurochemical ligands. We have performed a characterization of orphan channels from the nematode C. elegans, identifying five new monoamine-gated LGICs with diverse functional properties and expression postsynaptic to aminergic neurons. These include polymodal anion channels activated by both dopamine and tyramine, which may mediate inhibitory transmission by both molecules in vivo. Intriguingly, we also find that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the redistribution of LGC-50 to neuronal processes is modulated by olfactory conditioning, and lgc-50 point mutations that cause misregulation of receptor membrane expression interfere with olfactory learning. Thus, the intracellular trafficking and localization of these receptors at synapses may represent a molecular cornerstone of the learning mechanism.


Evaluation of the Differences in the Expression of Biogenic Amine-Related mRNAs and Proteins in Endometrioid Endometrial Cancer.

  • Michał Czerwiński‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Biogenic amines, such as adrenaline, noradrenaline, histamine, dopamine, and serotonin are important neurotransmitters that also regulate cell viability. Their detection and analysis are helpful in the diagnosis of many diseases, including cancer. The aim of this study was to determine the expression profile of the biogenic amine-related genes and proteins in endometrioid endometrial cancer compared to the control group. The material consisted of endometrial tissue samples and whole blood collected from 30 endometrioid endometrial cancer patients and 30 cancer-free patients. The gene expression was determined by the mRNA microarrays and validated by qRT-PCR. Protein levels were determined in the serum by the enzyme-linked immunosorbent assay (ELISA). Overexpression of histamine H1-H3 receptors and early growth response 1 and silencing of calmodulin, the histamine H4 receptor, and the dopamine D5 receptor have been reported in endometrioid endometrial cancer. The obtained results indicate disturbances in the signaling activated by histamine and dopamine receptors, which could potentially contribute to the progression of endometrioid endometrial cancer.


Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

  • Seong-Il Eyun‎ et al.
  • PloS one‎
  • 2016‎

Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.


Biogenic amine signaling systems in the red imported fire ant, Solenopsis invicta - Possible contributors to worker division of labor.

  • Yi-Xiang Qi‎ et al.
  • General and comparative endocrinology‎
  • 2018‎

The red imported fire ant, Solenopsis invicta Buren, is a dangerous invasive pest in the United States, China and other countries. Efficient division of labor is one of the main reasons for the success of this social insect. Biogenic amines are important regulators of worker division of labor in this eusocial insect, but the related molecular mechanisms are largely unknown. In this study, we identified 10 candidate biogenic amine synthetic enzyme genes and 17 candidate biogenic amine receptor genes in the genome of S. invicta. Quantitative real-time PCR results indicated that foragers had higher head transcripts levels of all the tested enzyme genes than nurses did. In the abdomen, only the rate-limiting enzyme genes for the biosynthesis of serotonin and dopamine were higher in foragers than in nurses. Among the tested serotonin receptors, only the expression of 5-HT2A gene showed significant difference between foragers and nurses. In the head, more abundant 5-HT2A transcripts were detected in foragers than in nurses. Foragers expressed higher Octβ4R than nurses in the head and abdomen. However, much lower mRNA levels of Dop3 receptor gene were detected in both body regions of foragers than nurses. Several other octopamine and tyramine receptor genes were also differentially expressed between foragers and nurses in the head and/or in the abdomen. Our results will improve the understanding of molecular mechanisms underlying biogenic amine modulation of the worker division of labor in S. invicta.


The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee (Apis mellifera) Brain.

  • Irina T Sinakevitch‎ et al.
  • Frontiers in systems neuroscience‎
  • 2017‎

This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release.


Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors.

  • Lothar Lindemann‎ et al.
  • Genomics‎
  • 2005‎

Trace amines are endogenous compounds structurally related to classical biogenic amines that have been studied for decades, triggered by their link to psychiatric conditions of high epidemiological and economical relevance. The understanding of their pharmacology on the molecular level was hampered until the recent discovery of trace-amine-specific receptors. We completed the identification of all members of this novel GPCR family in human, chimpanzee, rat, and mouse and observed remarkable interspecies differences, even between human and chimpanzee. The analysis of the chromosomal localizations, phylogenetic relationships, and ligand pocket vectors reveals three distinct receptor subfamilies. As most of these receptors do not respond to trace amines, each subfamily will presumably have a distinct pharmacological profile, which remains to be identified. We propose a uniform nomenclature describing this novel GPCR family in all mammalian species as trace-amine-associated receptors (TAARs), which resolves the ambiguities and contradictions of the previous naming.


Non-classical amine recognition evolved in a large clade of olfactory receptors.

  • Qian Li‎ et al.
  • eLife‎
  • 2015‎

Biogenic amines are important signaling molecules, and the structural basis for their recognition by G Protein-Coupled Receptors (GPCRs) is well understood. Amines are also potent odors, with some activating olfactory trace amine-associated receptors (TAARs). Here, we report that teleost TAARs evolved a new way to recognize amines in a non-classical orientation. Chemical screens de-orphaned eleven zebrafish TAARs, with agonists including serotonin, histamine, tryptamine, 2-phenylethylamine, putrescine, and agmatine. Receptors from different clades contact ligands through aspartates on transmembrane α-helices III (canonical Asp(3.32)) or V (non-canonical Asp(5.42)), and diamine receptors contain both aspartates. Non-classical monoamine recognition evolved in two steps: an ancestral TAAR acquired Asp(5.42), gaining diamine sensitivity, and subsequently lost Asp(3.32). Through this transformation, the fish olfactory system dramatically expanded its capacity to detect amines, ecologically significant aquatic odors. The evolution of a second, alternative solution for amine detection by olfactory receptors highlights the tremendous structural versatility intrinsic to GPCRs.


Search for Structural Basis of Interactions of Biogenic Amines with Human TAAR1 and TAAR6 Receptors.

  • Anna V Glyakina‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The identification and characterization of ligand-receptor binding sites are important for drug development. Trace amine-associated receptors (TAARs, members of the class A GPCR family) can interact with different biogenic amines and their metabolites, but the structural basis for their recognition by the TAARs is not well understood. In this work, we have revealed for the first time a group of conserved motifs (fingerprints) characterizing TAARs and studied the docking of aromatic (β-phenylethylamine, tyramine) and aliphatic (putrescine and cadaverine) ligands, including gamma-aminobutyric acid, with human TAAR1 and TAAR6 receptors. We have identified orthosteric binding sites for TAAR1 (Asp68, Asp102, Asp284) and TAAR6 (Asp78, Asp112, Asp202). By analyzing the binding results of 7500 structures, we determined that putrescine and cadaverine bind to TAAR1 at one site, Asp68 + Asp102, and to TAAR6 at two sites, Asp78 + Asp112 and Asp112 + Asp202. Tyramine binds to TAAR6 at the same two sites as putrescine and cadaverine and does not bind to TAAR1 at the selected Asp residues. β-Phenylethylamine and gamma-aminobutyric acid do not bind to the TAAR1 and TAAR6 receptors at the selected Asp residues. The search for ligands targeting allosteric and orthosteric sites of TAARs has excellent pharmaceutical potential.


Amine recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor.

  • Jean Paul Cerna-Vargas‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Bacteria contain many different receptor families that sense different signals permitting an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Due to a significant sequence divergence, the signal recognized by sensor domains is only poorly reflected in overall sequence identity. Biogenic amines are of central physiological relevance for microorganisms and serve for example as substrates for aerobic and anaerobic growth, neurotransmitters or osmoprotectants. Based on protein structural information and sequence analysis, we report here the identification of a sequence motif that is specific for amine-sensing dCache sensor domains (dCache_1AM). These domains were identified in more than 13,000 proteins from 8,000 bacterial and archaeal species. dCache_1AM containing receptors were identified in all major receptor families including sensor kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases. The screening of compound libraries and microcalorimetric titrations of selected dCache_1AM domains confirmed their capacity to specifically bind amines. Mutants in the amine binding motif or domains that contain a single mismatch in the binding motif, had either no or a largely reduced affinity for amines, illustrating the specificity of this motif. We demonstrate that the dCache_1AM domain has evolved from the universal amino acid sensing domain, providing novel insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and thus holds a strong promise to address an important bottleneck in microbiology: the identification of signals that stimulate numerous receptors.


Role of Biogenic Amines in Oviposition by the Diamondback Moth, Plutella xylostella L.

  • Fan Li‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Oviposition is an important reproductive behavior that is triggered by mating in insects, and biogenic amines might be involved in its regulation. The effects of biogenic amines on oviposition have only been studied in a few insect species, and the findings to date have not been conclusive. In addition, there are few studies on the effects of biogenic amines on oviposition of the diamondback moth, Plutella xylostella L. Here, we tested how mating and biogenic amines regulate oviposition of P. xylostella by injecting amines and amine receptor antagonists into virgin and mated females and counting the number of eggs laid afterward. Biogenic amines of octopamine and tyramine could induce virgin adults of P. xylostella to lay eggs, while dopamine and serotonin had no such effect on oviposition. Furthermore, the octopamine antagonists mianserin, epinastine, and phentolamine inhibited oviposition by mated females. The tyramine antagonist yohimbine, dopamine antagonist SCH23390, and serotonin antagonist ketanserin did not block oviposition by mated females, and octopamine and tyramine-inducing oviposition by virgin females could be inhibited by the octopamine antagonists mianserin and epinastine instead of the tyramine antagonist yohimbine. We conclude that octopamine and its receptors are involved in mating-triggered oviposition in P. xylostella, while tyramine acts as a subsidiary. Further, the inducing effect of tyramine on oviposition is achieved via octopamine receptors instead of tyramine receptors. This experiment is helpful to further understand the role of biogenic amines in mating regulation and to provide a new strategy for controlling P. xylostella.


Minor Changes in Erythrocyte Osmotic Fragility in Trace Amine-Associated Receptor 5 (TAAR5) Knockout Mice.

  • Ilya S Zhukov‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Trace amine-associated receptors (TAARs) are a group of G protein-coupled receptors that are expressed in the olfactory epithelium, central nervous system, and periphery. TAAR family generally consists of nine types of receptors (TAAR1-9), which can detect biogenic amines. During the last 5 years, the TAAR5 receptor became one of the most intriguing receptors in this subfamily. Recent studies revealed that TAAR5 is involved not only in sensing socially relevant odors but also in the regulation of dopamine and serotonin transmission, emotional regulation, and adult neurogenesis by providing significant input from the olfactory system to the limbic brain areas. Such results indicate that future antagonistic TAAR5-based therapies may have high pharmacological potential in the field of neuropsychiatric disorders. TAAR5 is known to be expressed in leucocytes as well. To evaluate potential hematological side effects of such future treatments we analyzed several hematological parameters in mice lacking TAAR5. In these mutants, we observed minor but significant changes in the osmotic fragility test of erythrocytes and hematocrit levels. At the same time, analysis of other parameters including complete blood count and reticulocyte levels showed no significant alterations in TAAR5 knockout mice. Thus, TAAR5 gene knockout leads to minor negative changes in the erythropoiesis or eryptosis processes, and further research in that field is needed. The impact of TAAR5 deficiency on other hematological parameters seems minimal. Such negative, albeit minor, effects of TAAR5 deficiency should be taken into account during future TAAR5-based therapy development.


Effects of ventrolateral medullary NMDA-receptor antagonism on biogenic amines and pressor response to muscle contraction.

  • G Asmundsson‎ et al.
  • Neuroscience research‎
  • 1998‎

Effects of D(-)2-amino-7-phosphonohepatanoic acid (AP-7), an N-methyl-D-aspartic acid (NMDA) receptor antagonist, administered into rostral ventrolateral medulla (RVLM) on changes in mean arterial pressure (MAP), heart rate (HR), extracellular levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) during static muscle contraction were investigated in anesthetized rats. Tibial nerve stimulation-evoked muscle contraction increased MAP and HR by 25+/-3 mmHg and 29+/-4 bpm, respectively. Microdialysis of AP-7 (1 microM) into the RVLM for 30 min attenuated the contraction-evoked cardiovascular responses with similar developed muscle tensions, without baseline HR or blood pressure changes. Administration of AP-7 into the caudal ventrolateral medulla had no effect on MAP or HR responses during contraction. Muscle contraction increased extracellular 5-HT in the RVLM by 144+/-35%, DA by 104+/-15% and NE by 62+/-12%. Perfusion of AP-7 for 30 min into the RVLM attenuated contraction-evoked increases in monoamines, concomitant to attenuating cardiovascular responses. Results demonstrate that NMDA-receptor blockade within the RVLM, but not the CVLM, inhibits cardiovascular responses during muscle contraction. Furthermore, NMDA receptor antagonism within the RVLM results in a decrease of biogenic amine release during muscle contraction, suggesting that extracellular biogenic amine concentrations are modulated by NMDA receptors.


Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice.

  • Evgeniya V Efimova‎ et al.
  • Neuropharmacology‎
  • 2021‎

Trace amine-associated receptors (TAARs) are a class of sensory G protein-coupled receptors that detect biogenic amines, products of decarboxylation of amino acids. The majority of TAARs (TAAR2-TAAR9) have been described mainly in the olfactory epithelium and considered to be olfactory receptors sensing innate odors. However, there is recent evidence that one of the members of this family, TAAR5, is expressed also in the limbic brain areas receiving projection from the olfactory system and involved in the regulation of emotions. In this study, we further characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO mice) that express beta-galactosidase mapping TAAR5 expression. We found that in TAAR5-KO mice the number of dopamine neurons, the striatal levels of dopamine and its metabolites, as well as striatal levels of GDNF mRNA, are elevated indicating a potential increase in dopamine neuron proliferation. Furthermore, an analysis of TAAR5 beta-galactosidase expression revealed that TAAR5 is present in the major neurogenic areas of the brain such as the subventricular zone (SVZ), the subgranular zone (SGZ) and the less characterized potentially neurogenic zone surrounding the 3rd ventricle. Direct analysis of neurogenesis by using specific markers doublecortin (DCX) and proliferating cell nuclear antigen (PCNA) revealed at least 2-fold increase in the number of proliferating neurons in the SVZ and SGZ of TAAR5-KO mice, but no such markers were detected in mutant or control mice in the areas surrounding the 3rd ventricle. These observations indicate that TAAR5 involved not only in regulation of emotional status but also adult neurogenesis and dopamine transmission. Thus, future TAAR5 antagonists may exert not only antidepressant and/or anxiolytic action but may also provide new treatment opportunity for neurodegenerative disorders such as Parkinson's disease.


The effects of biogenic amines in Chinese Huangjiu on the behavior of mice and hangover headache-related indices.

  • Wenmei Zhao‎ et al.
  • Food science & nutrition‎
  • 2022‎

Huangjiu (Chinese rice wine) is a popular and traditional alcoholic beverage in China; however, the consumption of Huangjiu readily results in hangover symptoms. The aim of this study was to identify the main components associated with behavioral inhibition, headache, and the relevant mechanisms by using a mice hangover model. The results of an open-field experiment revealed that the key biogenic amine associated with mice behavior was histamine, which inhibited the behavior activity of mice in a dose-dependent manner. Moreover, histamine treatment decreased the levels of serotonin (5-HT) and 5-hydroxyindole acetic acid. In addition, the levels of dopamine and nitric oxide, which are associated with migraine, increased in the brain tissue of mice. In addition, the expression of receptor genes of 5-HT, including Htr1a, Htr1f, and Htr2c, is essential in regulating various behaviors and mental activities. In conclusion, the present study demonstrated that histamine is a key component in Huangjiu, and it is related to hangover symptoms by affecting the level of 5-HT and its receptors.


Trace Amine-Associated Receptor 1 Localization at the Apical Plasma Membrane Domain of Fisher Rat Thyroid Epithelial Cells Is Confined to Cilia.

  • Joanna Szumska‎ et al.
  • European thyroid journal‎
  • 2015‎

The trace amine-associated receptor 1 (Taar1) is one member of the Taar family of G-protein-coupled receptors (GPCR) accepting various biogenic amines as ligands. It has been proposed that Taar1 mediates rapid, membrane-initiated effects of thyronamines, the endogenous decarboxylated and deiodinated relatives of the classical thyroid hormones T4 and T3.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: