Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny.

  • J P Rast‎ et al.
  • Immunity‎
  • 1997‎

A series of products were amplified using a PCR strategy based on short minimally degenerate primers and R. eglanteria (clearnose skate) spleen cDNA as template. These products were used as probes to select corresponding cDNAs from a spleen cDNA library. The cDNA sequences exhibit significant identity with prototypic (alpha, beta, gamma, and delta T cell antigen receptor (TCR) genes. Characterization of cDNAs reveals extensive variable region diversity, putative diversity segments, and varying degrees of junctional diversification. This demonstrates expression of both alpha/beta and gamma/delta TCR genes at an early level of vertebrate phylogeny and indicates that the three major known classes of rearranging antigen receptors were present in the common ancestor of the present-day jawed vertebrates.


Interleukin 2-mediated uncoupling of T cell receptor alpha/beta from CD3 signaling.

  • L Haughn‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

T cell activation and clonal expansion is the result of the coordinated functions of the receptors for antigen and interleukin (IL)-2. The protein tyrosine kinase p56(lck) is critical for the generation of signals emanating from the T cell antigen receptor (TCR) and has also been demonstrated to play a role in IL-2 receptor signaling. We demonstrate that an IL-2-dependent, antigen-specific CD4(+) T cell clone is not responsive to anti-TCR induced growth when propagated in IL-2, but remains responsive to both antigen and CD3epsilon-specific monoclonal antibody. Survival of this IL-2-dependent clone in the absence of IL-2 was supported by overexpression of exogenous Bcl-xL. Culture of this clonal variant in the absence of IL-2 rendered it susceptible to anti-TCR-induced signaling, and correlated with the presence of kinase-active Lck associated with the plasma membrane. The same phenotype is observed in primary, resting CD4(+) T cells. Furthermore, the presence of kinase active Lck associated with the plasma membrane correlates with the presence of ZAP 70-pp21zeta complexes in both primary T cells and T cell clones in circumstances of responsive anti-TCR signaling. The results presented demonstrate that IL-2 signal transduction results in the functional uncoupling of the TCR complex through altering the subcellular distribution of kinase-active Lck.


Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase.

  • J P Cabaniols‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

The contribution of template-independent nucleotide addition to antigen receptor diversity is unknown. We therefore determined the size of the T cell receptor (TCR)alpha/beta repertoire in mice bearing a null mutation on both alleles of the terminal deoxynucleotidyl transferase (Tdt) gene. We used a method based upon polymerase chain reaction amplification and exhaustive sequencing of various AV-AJ and BV-BJ combinations. In both wild-type and Tdt degrees / degrees mice, TCRAV diversity is one order of magnitude lower than the TCRBV diversity. In Tdt degrees / degrees animals, TCRBV chain diversity is reduced 10-fold compared with wild-type mice. In addition, in Tdt degrees / degrees mice, one BV chain can associate with three to four AV chains as in wild-type mice. The alpha/beta repertoire size in Tdt degrees / degrees mice is estimated to be 10(5) distinct receptors, approximately 5-10% of that calculated for wild-type mice. Thus, while Tdt activity is not involved in the combinatorial diversity resulting from alpha/beta pairing, it contributes to at least 90% of TCRalpha/beta diversity.


Major histocompatibility complex-independent recognition of a distinctive pollen antigen, most likely a carbohydrate, by human CD8+ alpha/beta T cells.

  • S Corinti‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

We have isolated CD8+ alpha/beta T cells from the blood of atopic and healthy individuals which recognize a nonpeptide antigen present in an allergenic extract from Parietaria judaica pollen. This antigen appears to be a carbohydrate because it is resistant to proteinase K and alkaline digestion, is hydrophilic, and is sensitive to trifluoromethane-sulphonic and periodic acids. In addition, on a reverse-phase high performance liquid chromatography column the antigen recognized by CD8(+) T cells separates in a fraction which contains >80% hexoses (glucose and galactose) and undetectable amounts of proteins. Presentation of this putative carbohydrate antigen (PjCHOAg) to CD8+ T cell clones is dependent on live antigen presenting cells (APCs) pulsed for >1 h at 37 degrees C, suggesting that the antigen has to be internalized and possibly processed. Indeed, fixed APCs or APCs pulsed at 15 degrees C were both unable to induce T cell response. Remarkably, PjCHOAg presentation is independent of the expression of classical major histocompatibility complex (MHC) molecules or CD1. CD8+ T cells stimulated by PjCHOAg-pulsed APCs undergo a sustained [Ca2+]i increase and downregulate their T cell antigen receptors (TCRs) in an antigen dose- and time-dependent fashion, similar to T cells stimulated by conventional ligands. Analysis of TCR Vbeta transcripts shows that six independent PjCHOAg-specific T cell clones carry the Vbeta8 segment with a conserved motif in the CDR3 region, indicating a structural requirement for recognition of this antigen. Finally, after activation, the CD8+ clones from the atopic patient express CD40L and produce high levels of interleukins 4 and 5, suggesting that the clones may have undergone a Th2-like polarization in vivo. These results reveal a new class of antigens which triggers T cells in an MHC-independent way, and these antigens appear to be carbohydrates. We suggest that this type of antigen may play a role in the immune response in vivo.


Molecular recognition of lipid antigens by T cell receptors.

  • E P Grant‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

The T cell antigen receptor (TCR) mediates recognition of peptide antigens bound in the groove of major histocompatibility complex (MHC) molecules. This dual recognition is mediated by the complementarity-determining residue (CDR) loops of the alpha and beta chains of a single TCR which contact exposed residues of the peptide antigen and amino acids along the MHC alpha helices. The recent description of T cells that recognize hydrophobic microbial lipid antigens has challenged immunologists to explain, in molecular terms, the nature of this interaction. Structural studies on the murine CD1d1 molecule revealed an electrostatically neutral putative antigen-binding groove beneath the CD1 alpha helices. Here, we demonstrate that alpha/beta TCRs, when transferred into TCR-deficient recipient cells, confer specificity for both the foreign lipid antigen and CD1 isoform. Sequence analysis of a panel of CD1-restricted, lipid-specific TCRs reveals the incorporation of template-independent N nucleotides that encode diverse sequences and frequent charged basic residues at the V(D)J junctions. These sequences permit a model for recognition in which the TCR CDR3 loops containing charged residues project between the CD1 alpha helices, contacting the lipid antigen hydrophilic head moieties as well as adjacent CD1 residues in a manner that explains antigen specificity and CD1 restriction.


Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen.

  • D Gay‎ et al.
  • Nature‎

Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.


Major histocompatibility complex class I molecules modulate activation threshold and early signaling of T cell antigen receptor-gamma/delta stimulated by nonpeptidic ligands.

  • I Carena‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Killer cell inhibitory receptors and CD94-NKG2-A/B heterodimers are major histocompatibility complex class I-specific inhibitory receptors expressed by natural killer cells, T cell antigen receptor (TCR)-gamma/delta cells, and a subset of TCR-alpha/beta cells. We studied the functional interaction between TCR-gamma/delta and CD94, this inhibitory receptor being expressed on the majority of gamma/delta T cells. When engaged by human histocompatibility leukocyte antigen class I molecules, CD94 downmodulates activation of human TCR-gamma/delta by phosphorylated ligands. CD94-mediated inhibition is more effective at low than at high doses of TCR ligand, which may focus T cell responses towards antigen-presenting cells presenting high amounts of antigen. CD94 engagement has major effects on TCR signaling cascade. It facilitates recruitment of SHP-1 phosphatase to TCR-CD3 complex and affects phosphorylation of Lck and ZAP-70 kinase, but not of CD3 zeta chain upon TCR triggering. These events may cause abortion of proximal TCR-mediated signaling and set a higher TCR activation threshold.


In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers.

  • K Benlagha‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

The CD1 family of major histocompatibility complex (MHC)-like molecules specializes in presenting lipid and glycolipid antigens to alpha/beta T lymphocytes, but little is known about the size of the CD1-restricted T cell population or the frequency of T lymphocytes specific for a given glycolipid antigen. Here, we report the generation and use of mouse CD1d1-glycolipid tetramers to visualize CD1d-restricted T cells. In contrast with previous BIAcore-based estimates of very short half-lives for CD1d-glycolipid complexes, we found that the dissociation rate of several different CD1d-glycolipid complexes was very slow. Fluorescent tetramers of mouse CD1d1 complexed with alpha-galactosylceramide (alphaGalCer), the antigen recognized by mouse Valpha14-Jalpha281/Vbeta8 and human Valpha24-JalphaQ/Vbeta11 natural killer T (NKT) cell T cell receptors (TCRs), allowed us for the first time to accurately describe, based on TCR specificity, the entire population of NKT cells in vivo and to identify a previously unrecognized population of NK1.1-negative "NKT" cells, which expressed a different pattern of integrins. In contrast, natural killer (NK) cells failed to bind the tetramers either empty or loaded with alphaGalCer, suggesting the absence of a CD1d-specific, antigen-nonspecific NK receptor. Mouse CD1d1-alphaGalCer tetramers also stained human NKT cells, indicating that they will be useful for probing a range of mouse and human conditions such as insulin-dependent diabetes mellitus, tumor rejection, and infectious diseases where NKT cells play an important role.


Chimeric Antigen Receptor-Engineered Human Gamma Delta T Cells: Enhanced Cytotoxicity with Retention of Cross Presentation.

  • Anna Capsomidis‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2018‎

Gamma delta T (γδT) lymphocytes are primed for rapid function, including cytotoxicity toward cancer cells, and are a component of the immediate stress response. Following activation, they can function as professional antigen-presenting cells. Chimeric antigen receptors (CARs) work by focusing T cell function on defined cell surface tumor antigens and provide essential costimulation for robust activation. Given the natural tropism of γδT cells for the tumor microenvironment, we hypothesized that their transduction with CARs might enhance cytotoxicity while retaining their ability to migrate to tumor and act as antigen-presenting cells to prolong the intratumoral immune response. Using a GD2-targeting CAR as a model system, we showed that γδT cells of both Vδ1 and Vδ2 subsets could be expanded and transduced to sufficient numbers for clinical studies. The CAR added to the cells' innate cytotoxicity by enhancing GD2-specific killing of GD2-expressing cancer cell lines. Migration toward tumor cells in vitro was not impaired by the presence of the CAR. Expanded CAR-transduced Vδ2 cells retained the ability to take up tumor antigens and cross presented the processed peptide to responder alpha beta T (αβT) lymphocytes. γδ CAR-T cell products show promise for evaluation in clinical studies of solid tumors.


T cell development in mice lacking all T cell receptor zeta family members (Zeta, eta, and FcepsilonRIgamma).

  • E W Shores‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

The zeta family includes zeta, eta, and FcepsilonRIgamma (Fcgamma). Dimers of the zeta family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking zeta/eta chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a zeta family dimer can promote T cell maturation, or that in the absence of zeta/eta, Fcgamma serves as a subunit in TCR complexes. To elucidate the role of zeta family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only zeta/eta or Fcgamma. The data reveal that surface complexes that are expressed in the absence of zeta family dimers are capable of transducing signals required for alpha/beta-T cell development. Strikingly, T cells generated in both zeta/eta-/- and zeta/eta-/--Fcgamma-/- mice exhibit a memory phenotype and elaborate interferon gamma. Finally, examination of different T cell populations reveals that zeta/eta and Fcgamma have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of zeta family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations.


T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes.

  • Tomasz Kula‎ et al.
  • Cell‎
  • 2019‎

T cell recognition of specific antigens mediates protection from pathogens and controls neoplasias, but can also cause autoimmunity. Our knowledge of T cell antigens and their implications for human health is limited by the technical limitations of T cell profiling technologies. Here, we present T-Scan, a high-throughput platform for identification of antigens productively recognized by T cells. T-Scan uses lentiviral delivery of antigen libraries into cells for endogenous processing and presentation on major histocompatibility complex (MHC) molecules. Target cells functionally recognized by T cells are isolated using a reporter for granzyme B activity, and the antigens mediating recognition are identified by next-generation sequencing. We show T-Scan correctly identifies cognate antigens of T cell receptors (TCRs) from viral and human genome-wide libraries. We apply T-Scan to discover new viral antigens, perform high-resolution mapping of TCR specificity, and characterize the reactivity of a tumor-derived TCR. T-Scan is a powerful approach for studying T cell responses.


Archaic humans have contributed to large-scale variation in modern human T cell receptor genes.

  • Martin Corcoran‎ et al.
  • Immunity‎
  • 2023‎

Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.


TScan-II: A genome-scale platform for the de novo identification of CD4+ T cell epitopes.

  • Mohammad H Dezfulian‎ et al.
  • Cell‎
  • 2023‎

CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.


High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity.

  • Rodrigo Vazquez-Lombardi‎ et al.
  • Immunity‎
  • 2022‎

A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.


Self-reactive germline-like TCR alpha chains shared between blood and pancreas.

  • Peter Linsley‎ et al.
  • Research square‎
  • 2023‎

Human islet antigen reactive CD4 + memory T cells (IAR T cells) from peripheral blood have been studied extensively for their role in the pathogenesis of autoimmune type 1 diabetes (T1D). However, IAR T cells are rare, and it remains poorly understood how they affect T1D progression in the pancreas. Using single cell RNA-sequencing coupled with a multiplexed activation induced marker (AIM) enrichment assay, we identified paired TCR alpha/beta (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new onset, and established T1D donors. Using TCR sequences as barcodes, we measured infiltration of IAR T cells from blood into pancreas of organ donors with and without T1D. We detected extensive TCR sharing between IAR T cells from peripheral blood and pancreatic infiltrating T cells (PIT), with perfectly matched or single mismatched TRA junctions and J gene regions, comprising ~ 34% of unique IAR TCRs. PIT-matching IAR T cells had public TRA chains that showed increased use of germline-encoded residues in epitope engagement and a propensity for cross-reactivity. The link with T cells in the pancreas implicates autoreactive IAR T cells with shared TRA junctions and increased levels in blood with the prediabetic and new onset phases of T1D progression.


Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity.

  • F M Spada‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

The specificity of immunoglobulins and alpha/beta T cell receptors (TCRs) provides a framework for the molecular basis of antigen recognition. Yet, evolution has preserved a separate lineage of gamma/delta antigen receptors that share characteristics of both immunoglobulins and alpha/beta TCRs but whose antigens remain poorly understood. We now show that T cells of the major tissue gamma/delta T cell subset recognize nonpolymorphic CD1c molecules. These T cells proliferated in response to CD1+ presenter cells, lysed CD1c+ targets, and released T helper type 1 (Th1) cytokines. The CD1c-reactive gamma/delta T cells were cytotoxic and used both perforin- and Fas-mediated cytotoxicity. Moreover, they produced granulysin, an important antimicrobial protein. Recognition of CD1c was TCR mediated, as recognition was transferred by transfection of the gamma/delta TCR. Importantly, all CD1c-reactive gamma/delta T cells express V delta 1 TCRs, the TCR expressed by most tissue gamma/delta T cells. Recognition by this tissue pool of gamma/delta T cells provides the human immune system with the capacity to respond rapidly to nonpolymorphic molecules on professional antigen presenting cells (APCs) in the absence of foreign antigens that may activate or eliminate the APCs. The presence of bactericidal granulysin suggests these cells may directly mediate host defense even before foreign antigen-specific T cells have differentiated.


EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity.

  • Ran Jing‎ et al.
  • Cell stem cell‎
  • 2022‎

Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited resource for cell therapies, but the derivation of mature cell types remains challenging. The histone methyltransferase EZH1 is a negative regulator of lymphoid potential during embryonic hematopoiesis. Here, we demonstrate that EZH1 repression facilitates in vitro differentiation and maturation of T cells from iPSCs. Coupling a stroma-free T cell differentiation system with EZH1-knockdown-mediated epigenetic reprogramming, we generated iPSC-derived T cells, termed EZ-T cells, which display a highly diverse T cell receptor (TCR) repertoire and mature molecular signatures similar to those of TCRαβ T cells from peripheral blood. Upon activation, EZ-T cells give rise to effector and memory T cell subsets. When transduced with chimeric antigen receptors (CARs), EZ-T cells exhibit potent antitumor activities in vitro and in xenograft models. Epigenetic remodeling via EZH1 repression allows efficient production of developmentally mature T cells from iPSCs for applications in adoptive cell therapy.


Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release.

  • Jeong A Park‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

T cell-based immunotherapies using chimeric antigen receptors (CAR) or bispecific antibodies (BsAb) have produced impressive responses in hematological malignancies. However, major hurdles remained, including cytokine release syndrome, neurotoxicity, on-target off-tumor effects, reliance on autologous T cells, and failure in most solid tumors. BsAb armed T cells offer a safe alternative.


A Simple and Robust Single-Step Method for CAR-Vδ1 γδT Cell Expansion and Transduction for Cancer Immunotherapy.

  • Gabrielle M Ferry‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The γδT cell subset of peripheral lymphocytes exhibits potent cancer antigen recognition independent of classical peptide MHC complexes, making it an attractive candidate for allogeneic cancer adoptive immunotherapy. The Vδ1-T cell receptor (TCR)-expressing subset of peripheral γδT cells has remained enigmatic compared to its more prevalent Vγ9Vδ2-TCR and αβ-TCR-expressing counterparts. It took until 2021 before a first patient was dosed with an allogeneic adoptive Vδ1 cell product despite pre-clinical promise for oncology indications stretching back to the 1980s. A contributing factor to the paucity of clinical progress with Vδ1 cells is the lack of robust, consistent and GMP-compatible expansion protocols. Herein we describe a reproducible one-step, clinically translatable protocol for Vδ1-γδT cell expansion from peripheral blood mononuclear cells (PBMCs), that is further compatible with high-efficiency gene engineering for immunotherapy purposes. Briefly, αβTCR- and CD56-depleted PBMC stimulation with known-in-the-art T cell stimulators, anti-CD3 mAb (clone: OKT-3) and IL-15, leads to robust Vδ1 cell expansion of high purity and innate-like anti-tumor efficacy. These Vδ1 cells can be virally transduced to express chimeric antigen receptors (CARs) using standard techniques, and the CAR-Vδ1 exhibit antigen-specific persistence, cytotoxicity and produce IFN-γ. Practicable, GMP-compatible engineered Vδ1 cell expansion methods will be crucial to the wide-spread clinical testing of these cells for oncology indications.


Immune targets to stop future SARS-CoV-2 variants.

  • Milena Silva Souza‎ et al.
  • Microbiology spectrum‎
  • 2023‎

The emergence of SARS-CoV-2 had a major impact across the world. It is true that the collaboration of scientists from all over the world resulted in a rapid response against COVID-19, mainly with the development of vaccines against the disease. However, many viral genetic variants that threaten vaccines have emerged. Our study reveals highly conserved antigenic regions in the vaccines have emerged. Our study reveals highly conserved antigenic regions in the spike protein in all variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) as well as in the wild-type virus. Such immune targets can be used to fight future SARS-CoV-2 variants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: