Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 96 papers

Fibulin-5 Regulates Angiopoietin-1/Tie-2 Receptor Signaling in Endothelial Cells.

  • Wilson Chan‎ et al.
  • PloS one‎
  • 2016‎

Fibulin-5 is an extracellular matrix glycoprotein that plays critical roles in vasculogenesis and embryonic development. Deletion of Fibulin-5 in mice results in enhanced skin vascularization and upregulation of the angiogenesis factor angiopoietin-1 (Ang-1), suggesting that Fibulin-5 functions as an angiogenesis inhibitor. In this study, we investigate the inhibitory effects of Fibulin-5 on Ang-1/TIE-2 receptor pathway signaling and cell survival in human endothelial cells.


Expression and regulation of Angiopoietins and their receptor Tie-2 in sika deer antler.

  • Hong-Liang Zhang‎ et al.
  • Animal cells and systems‎
  • 2017‎

The cartilage vascularization and chondrocyte survival are essential for endochondral ossification which occurs in the process of antler growth. Angiopoietins (Ang) is a family of major angiogenic growth factors and involved in regulating the vascularization. However, the expression and regulation of Angs in the antler are still unknown. The aim of this study is to localize the expression of Ang-1, Ang-2 and their receptor Tie-2 in sika deer antler using in situ hybridization and focused on analyzing the regulation of testosterone, estrogen, all-trans-retinoic acid (ATRA) and 9cRA on their expression in antler chondrocytes. The results showed that Ang-1, Ang-2 and Tie-2 were highly expressed in antler chondrocytes. Administration of testosterone to antler chondrocytes led to a notable increase in the expression of Ang-1 and Tie-2, and a reduction in the expression of Ang-2. The similar result was also observed after estrogen treatment. In contrast, ATRA and 9cRA could inhibit the expression of Ang-1 in antler chondrocytes and heighten the expression of Ang-2. Simultaneously, ATRA could downregulate the expression of Tie-2 in antler chondrocytes at 12 and 24 h, while 9cRA upregulate the expression of Tie-2 at 3 and 6 h. Collectively, Ang-1, Ang-2 and Tie-2 are expressed in antler chondrocytes and their expression can be affected by testosterone, estrogen, ATRA and 9cRA.


Regulation of angiopoietin and Tie-2 receptor expression in non-reproductive tissues by estrogen.

  • Fencheng Ye‎ et al.
  • Steroids‎
  • 2002‎

Estrogen promotes endothelial cell proliferation and survival in the vasculture of non-reproductive organs. The main mechanisms through which estrogen exerts its effects on endothelial cells remain unknown. Angiopoietins are newly described modulators of endothelial cell survival and they exert their effects through the activation of endothelial cell-specific Tie-2 receptors. In this study, we evaluated whether estrogen modulates the activity and expression of Tie-2 receptors, Ang-1 and its endogenous antagonist; angiopoietins-2 (Ang-2) in non-reproductive organs. Using RT-PCR, we found that daily administration of 17-beta-estradiol for 8 days in ovariectomized rats results in a significant reduction in tissue Ang-1 mRNA expression. By comparison, estrogen therapy produced a significant increase in Ang-2 mRNA in estrogen-treated rats with heart, kidney and lung Ang-2 mRNA levels reaching 169%, 152% and 224% of those of oil-treated animals, respectively. We also observed that tyrosine phosphorylation of Tie-2 receptors is significantly attenuated in ovariectomized rats treated with 17-beta-estradiol. Our results suggest that the effects of estrogen on the vasculature of non-reproductive organs require the inhibition of angiopoietin-1-Tie-2 receptor pathway and that this inhibition is achieved through simultaneous down-regulation of Ang-1 and Tie-2 expression and elevation in Ang-2 expression.


Zebrafish Tie-2 shares a redundant role with Tie-1 in heart development and regulates vessel integrity.

  • Evisa Gjini‎ et al.
  • Disease models & mechanisms‎
  • 2011‎

Tie-2 is a member of the receptor tyrosine kinase family and is required for vascular remodeling and maintenance of mammalian vessel integrity. A number of mutations in the human TIE2 gene have been identified in patients suffering from cutaneomucosal venous malformations and ventricular septal defects. How exactly Tie-2 signaling pathways play different roles in both vascular development and vascular stability is unknown. We have generated a zebrafish line carrying a stop mutation in the kinase domain of the Tie-2 receptor. Mutant embryos lack Tie-2 protein, but do not display any defect in heart and vessel development. Simultaneous loss of Tie-1 and Tie-2, however, leads to a cardiac phenotype. Our study shows that Tie-1 and Tie-2 are not required for early heart development, yet they have redundant roles for the maintenance of endocardial-myocardial connection in later stages. Tie-2 and its ligand Angiopoietin-1 have also been reported to play an important role in vessel stability. We used atorvastatin and simvastatin, drugs that cause bleeding in wild-type zebrafish larvae, to challenge vessel stability in tie-2 mutants. Interestingly, recent clinical studies have reported hemorrhagic stroke as a side effect of atorvastatin treatment. Exposure of embryos to statins revealed that tie-2 mutants are significantly protected from statin-induced bleeding. Furthermore, tie-2 mutants became less resistant to bleeding after VE-cadherin knockdown. Taken together, these data show that atorvastatin affects vessel stability through Tie-2, and that VE-cadherin and Tie-2 act in concert to allow vessel remodeling while playing a role in vessel stability. Our study introduces an additional vertebrate model to study in vivo the function of Tie-2 in development and disease.


Regulation of angiopoietin-1/Tie-2 receptor signaling in endothelial cells by dual-specificity phosphatases 1, 4, and 5.

  • Raquel Echavarria‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Angiopoietin-1 (Ang-1) promotes survival and migration of endothelial cells, in part through the activation of mitogen-activated protein kinase (MAPK) pathways downstream of Tie-2 receptors. Dual-specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine residues on target MAPKs. The mechanisms by which DUSPs modulate MAPK activation in Ang-1/Tie-2 receptor signaling are unknown in endothelial cells.


Role of Angiopoietins and Tie-2 in Diabetic Retinopathy.

  • Nervana Khalaf‎ et al.
  • Electronic physician‎
  • 2017‎

The aim of this study was to determine the serum levels of angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), soluble vascular endothelial tyrosine kinase receptor (Tie-2) and vascular endothelial growth factor (VEGF), in the serum of type 2 diabetic patients having non-proliferative (NPDR) or proliferative diabetic retinopathy (PDR).


Concentration of angiopoietins 1 and 2 and their receptor Tie-2 in peripheral blood in patients with chronic obstructive pulmonary disease.

  • Dorota Kierszniewska-Stępień‎ et al.
  • Postepy dermatologii i alergologii‎
  • 2015‎

Both angiopoietins (angiopoietin 1 - Ang-1, angiopoietin 2 - Ang-2) and angiopoietin receptors (Tie) are involved in angiogenesis and vascular remodeling.


VE-PTP controls blood vessel development by balancing Tie-2 activity.

  • Mark Winderlich‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti-VE-PTP antibodies trigger endocytosis and selectively affect Tie-2-associated, but not VE-cadherin-associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.


Involvement of the ANGPTs/Tie-2 system in ovarian hyperstimulation syndrome (OHSS).

  • Leopoldina Scotti‎ et al.
  • Molecular and cellular endocrinology‎
  • 2013‎

Ovarian hyperstimulation syndrome (OHSS) is a disorder associated with ovarian stimulation. OHSS features are ovarian enlargement with fluid shifting to the third space. Disturbances in the vasculature are considered the main changes that lead to OHSS. Our aim was to analyze the levels of angiopoietins 1 and 2 (ANGPT1 and 2) and their soluble and membrane receptors (s/mTie-2) in follicular fluid (FF) and in granulosa-lutein cells culture (GLCs) from women at risk of developing OHSS. We also evaluated the effect of ANGPT1 on endothelial cell migration. In ovaries from an OHSS rat model, we analyzed the protein concentration of ANGPTs, their mTie-2 receptor, and platelet-derived growth factor PDGF-B, -D and PDGFR-β. ANGPT1 levels were increased in both FF and GLCs from women at risk of OHSS. Incubation of these FF with an ANGPT1 neutralizing antibody decreased endothelial cell migration. In the ovaries of OHSS rat model, mTie-2 protein levels increased and PDGF-B and -D decreased. In summary, these results suggest that ANGPT1 could be another mediator in the development of OHSS.


Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal.

  • Rana Abou-Khalil‎ et al.
  • Cell stem cell‎
  • 2009‎

Mechanisms governing muscle satellite cell withdrawal from cell cycle to enter into quiescence remain poorly understood. We studied the role of angiopoietin 1 (Ang1) and its receptor Tie-2 in the regulation of myogenic precursor cell (mpc) fate. In human and mouse, Tie-2 was preferentially expressed by quiescent satellite cells in vivo and reserve cells (RCs) in vitro. Ang1/Tie-2 signaling, through ERK1/2 pathway, decreased mpc proliferation and differentiation, increased the number of cells in G0, increased expression of RC-associated markers (p130, Pax7, Myf-5, M-cadherin), and downregulated expression of differentiation-associated markers. Silencing Tie-2 had opposite effects. Cells located in the satellite cell neighborhood (smooth muscle cells, fibroblasts) upregulated RC-associated markers by secreting Ang1 in vitro. In vivo, Tie-2 blockade and Ang1 overexpression increased the number of cycling and quiescent satellite cells, respectively. We propose that Ang1/Tie-2 signaling regulates mpc self-renewal by controlling the return to quiescence of a subset of satellite cells.


Paricalcitol Improves the Angiopoietin/Tie-2 and VEGF/VEGFR2 Signaling Pathways in Adriamycin-Induced Nephropathy.

  • Amanda Lima Deluque‎ et al.
  • Nutrients‎
  • 2022‎

Renal endothelial cell (EC) injury and microvascular dysfunction contribute to chronic kidney disease (CKD). In recent years, increasing evidence has suggested that EC undergoes an endothelial-to-mesenchymal transition (EndoMT), which might promote fibrosis. Adriamycin (ADR) induces glomerular endothelial dysfunction, which leads to progressive proteinuria in rodents. The activation of the vitamin D receptor (VDR) plays a crucial role in endothelial function modulation, cell differentiation, and suppression of the expression of fibrotic markers by regulating the production of nitric oxide (NO) by activating the endothelial NO synthase (eNOS) in the kidneys. This study aimed to evaluate the effect of paricalcitol treatment on renal endothelial toxicity in a model of CKD induced by ADR in rats and explore mechanisms involved in EC maintenance by eNOS/NO, angiopoietins (Angs)/endothelium cell-specific receptor tyrosine kinase (Tie-2, also known as TEK) and vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) axis. The results show that paricalcitol attenuated the renal damage ADR-induced with antiproteinuric effects, glomerular and tubular structure, and function protection. Furthermore, activation of the VDR promoted the maintenance of the function and structure of glomerular, cortical, and external medullary endothelial cells by regulating NO production. In addition, it suppressed the expression of the mesenchymal markers in renal tissue through attenuation of (transforming growth factor-beta) TGF-β1/Smad2/3-dependent and downregulated of Ang-2/Tie-2 axis. It regulated the VEGF/VEGFR2 pathway, which was ADR-deregulated. These effects were associated with lower AT1 expression and VDR recovery to renal tissue after paricalcitol treatment. Our results showed a protective role of paricalcitol in the renal microvasculature that could be used as a target for treating the beginning of CKD.


Tyrosine kinase receptor TIE-1 mediates platinum resistance by promoting nucleotide excision repair in ovarian cancer.

  • Masumi Ishibashi‎ et al.
  • Scientific reports‎
  • 2018‎

Platinum resistance is one of the most challenging problems in ovarian cancer treatment. High-throughput functional siRNA screening identified tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE-1) as a gene that confers cells resistant to cisplatin. Conversely enforced over-expression of TIE-1 was validated to decrease cisplatin sensitivity in multiple ovarian cancer cell lines and up-regulation of TIE-1 was correlated with poor prognosis and cisplatin resistance in patients with ovarian cancer. Mechanistically, TIE-1 up-regulates the nucleotide excision repair (NER) system mediated by xeroderma pigmentosum complementation group C (XPC), thereby leading to decreased susceptibility to cisplatin-induced cell death without affecting cisplatin uptake and excretion. Importantly potentiation of therapeutic efficacy by TIE-1 inhibition was selective to DNA-adduct-type chemotherapeutic platinum reagents. Therefore, TIE-1 is suggested to promote XPC-dependent NER, rendering ovarian cancer cells resistant to platinum. Accompanied with novel findings, TIE-1 could represent as a novel therapeutic target for platinum-resistant ovarian cancer.


Novel TIE-2 inhibitor BAY-826 displays in vivo efficacy in experimental syngeneic murine glioma models.

  • Hannah Schneider‎ et al.
  • Journal of neurochemistry‎
  • 2017‎

Targeting the vascular endothelial growth factor signaling axis in glioblastoma inevitably leads to tumor recurrence and a more aggressive phenotype. Therefore, other angiogenic pathways, like the angiopoietin/tunica interna endothelial cell kinase (TIE) signaling axis, have become additional targets for therapeutic intervention. Here, we explored whether targeting the receptor tyrosine kinase TIE-2 using a novel, highly potent, orally available small molecule TIE-2 inhibitor (BAY-826) improves tumor control in syngeneic mouse glioma models. BAY-826 inhibits TIE-2 phosphorylation in vitro and in vivo as demonstrated by suppression of Angiopoietin-1- or Na3 VO4 -induced TIE-2 phosphorylation in glioma cells or extracts of lungs from BAY-826-treated mice. There was a trend toward prolonged survival upon single-agent treatment in two of four models (SMA-497 and SMA-540) and there was a significant survival benefit in one model (SMA-560). Co-treatment with BAY-826 and irradiation was ineffective in one model (SMA-497), but provided synergistic prolongation of survival in another (SMA-560). Decreased vessel densities and increased leukocyte infiltration were observed, but might be independent processes as the effect was also observed in single treatment modalities. These data demonstrate that TIE-2 inhibition may improve tumor response to treatment in highly vascularized tumors such as glioblastoma.


Inhibition of protein tyrosine phosphatase improves angiogenesis via enhancing Ang-1/Tie-2 signaling in diabetes.

  • Jian-Xiong Chen‎ et al.
  • Experimental diabetes research‎
  • 2012‎

Diabetes is associated with impairment of angiogenesis such as reduction of myocardial capillary formation. Our previous studies demonstrate that disruption of Angiopoietin-1 (Ang-1)/Tie-2 signaling pathway contributes to the diabetes-associated impairment of angiogenesis. Protein tyrosine phosphatase (PTP) has a critical role in the regulation of insulin signal by inhibition of tyrosine kinase phosphorylation. In present study, we examined the role of protein tyrosine phosphatase-1 (SHP-1) in diabetes-associated impairment of Ang-1/Tie-2 angiogenic signaling and angiogenesis. SHP-1 expression was significantly increased in diabetic db/db mouse hearts. Furthermore, SHP-1 bond to Tie-2 receptor and stimulation with Ang-1 led to SHP-1 dissociation from Tie-2 in mouse heart microvascular endothelial cell (MHMEC). Exposure of MHMEC to high glucose (HG, 30 mmol/L) increased SHP-1/Tie-2 association accompanied by a significant reduction of Tie-2 phosphorylation. Exposure of MHMEC to HG also blunted Ang-1-mediated SHP-1/Tie-2 dissociation. Knockdown of SHP-1 significantly attenuated HG-induced caspase-3 activation and apoptosis in MHMEC. Treatment with PTP inhibitors restored Ang-1-induced Akt/eNOS phosphorylation and angiogenesis. Our data implicate a critical role of SHP-1 in diabetes-associated vascular complications, and that upregulation of Ang-1/Tie-2 signaling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of diabetes-associated impairment of angiogenesis.


Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents.

  • Lin Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4.


Gamma-Tocotrienol Induces Apoptosis in Prostate Cancer Cells by Targeting the Ang-1/Tie-2 Signalling Pathway.

  • Kai Dun Tang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Emerging evidence suggests that gamma-tocotrienol (γ-T3), a vitamin E isomer, has potent anti-cancer properties against a wide-range of cancers. γ-T3 not only inhibited the growth and survival of cancer cells in vitro, but also suppressed angiogenesis and tumour metastasis under in vivo conditions. Recently, γ-T3 was found to target cancer stem cells (CSCs), leading to suppression of tumour formation and chemosensitisation. Despite its promising anti-cancer potential, the exact mechanisms responsible for the effects of γ-T3 are still largely unknown. Here, we report the identification of Ang-1 (Angiopoietin-1)/Tie-2 as a novel γ-T3 downstream target. In prostate cancer cells, γ-T3 treatment leads to the suppression of Ang-1 at both the mRNA transcript and protein levels. Supplementing the cells with Ang-1 was found to protect them against the anti-CSC effect of γ-T3. Intriguingly, inactivation of Tie-2, a member receptor that mediates the effect of Ang-1, was found to significantly enhance the cytotoxic effect of γ-T3 through activation of AMP-activated protein kinase (AMPK) and subsequent interruption of autophagy. Our results highlighted the therapeutic potential of using γ-T3 in combination with a Tie-2 inhibitor to treat advanced prostate cancer.


Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling.

  • Hsiu-Mei Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Foretinib, a multiple kinase inhibitor undergoing clinical trials, could suppress the activity of hepatocyte growth factor (HGF) receptor c-MET and vascular endothelial growth factor receptor-2 (VEGFR-2). In addition, Foretinib may inhibit two critical lymphangiogenic signaling receptors VEGFR-3 and TIE-2. However, the effect of Foretinib on lymphatic endothelial cells (LECs) in vitro and lymphangiogenesis in vivo is still unknown. We found Foretinib decreased basal- and HGF-induced c-MET activity at low concentrations. However, Foretinib only reduced the proliferation of pancreatic cancer cells at high concentration reflecting the intrinsic chemoresistance of pancreatic cancer cells. Foretinib inhibited VEGF-A, VEGF-C and Angiopoetin-2 (ANG-2)-stimulated tube formation and sprouting of LECs by reducing VEGFR-2, VEGFR-3 and TIE-2 activation and increased apoptosis of LECs. In xenograft animal study, Foretinib suppressed tumor growth by inhibiting proliferation, angiogenesis and lymphangiogenesis. Additionally, Foretinib inhibited angiogenesis and lymphangiogenesis more significantly and exhibited low detrimental effect in orthotopic animal study. Collectively, we suggested that Foretinib simultaneously inhibits cancer cells and LECs to reduce pancreatic tumor growth in vivo and demonstrated for the first time that Foretinib suppresses angiogenesis and lymphangiogenesis by blocking VEGFR-2/3 and TIE-2 signaling.


Endothelin-1/Endothelin Receptor Type A-Angiopoietins/Tie-2 Pathway in Regulating the Cross Talk Between Glomerular Endothelial Cells and Podocytes in Trichloroethylene-Induced Renal Immune Injury.

  • Haibo Xie‎ et al.
  • Journal of inflammation research‎
  • 2021‎

This study aimed to investigate the mechanism in regulating the cross talk between glomerular endothelial cells and podocytes in "occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT)" patients.


Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin.

  • Maike Frye‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Vascular endothelial (VE)-protein tyrosine phosphatase (PTP) associates with VE-cadherin, thereby supporting its adhesive activity and endothelial junction integrity. VE-PTP also associates with Tie-2, dampening the tyrosine kinase activity of this receptor that can support stabilization of endothelial junctions. Here, we have analyzed how interference with VE-PTP affects the stability of endothelial junctions in vivo. Blocking VE-PTP by antibodies, a specific pharmacological inhibitor (AKB-9778), and gene ablation counteracted vascular leak induction by inflammatory mediators. In addition, leukocyte transmigration through the endothelial barrier was attenuated. Interference with Tie-2 expression in vivo reversed junction-stabilizing effects of AKB-9778 into junction-destabilizing effects. Furthermore, lack of Tie-2 was sufficient to weaken the vessel barrier. Mechanistically, inhibition of VE-PTP stabilized endothelial junctions via Tie-2, which triggered activation of Rap1, which then caused the dissolution of radial stress fibers via Rac1 and suppression of nonmuscle myosin II. Remarkably, VE-cadherin gene ablation did not abolish the junction-stabilizing effect of the VE-PTP inhibitor. Collectively, we conclude that inhibition of VE-PTP stabilizes challenged endothelial junctions in vivo via Tie-2 by a VE-cadherin-independent mechanism. In the absence of Tie-2, however, VE-PTP inhibition destabilizes endothelial barrier integrity in agreement with the VE-cadherin-supportive effect of VE-PTP.


Angiopoietin-1/Tie-2 signal after focal traumatic brain injury is potentiated by BQ788, an ETB receptor antagonist, in the mouse cerebrum: Involvement in recovery of blood-brain barrier function.

  • Shotaro Michinaga‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Angiopoietin-1, an angiogenic factor, stabilizes brain microvessels through Tie-2 receptor tyrosine kinase. In traumatic brain injury, blood-brain barrier (BBB) disruption is an aggravating factor that induces brain edema and neuroinflammation. We previously showed that BQ788, an endothelin ETB receptor antagonist, promoted recovery of BBB function after lateral fluid percussion injury (FPI) in mice. To clarify the mechanisms underlying BBB recovery mediated by BQ788, we examined the involvements of the angiopoietin-1/Tie-2 signal. When angiopoietin-1 production and Tie-2 phosphorylation were assayed by quantitative reverse transcription polymerase chain reaction and western blotting, increased angiopoietin-1 production and Tie-2 phosphorylation were observed in 7-10 days after FPI in the mouse cerebrum, whereas no significant effects were obtained at 5 days. When BQ788 (15 nmol/day, i.c.v.) were administered in 2-5 days after FPI, increased angiopoietin-1 production and Tie-2 phosphorylation were observed. Immunohistochemical observations showed that brain microvessels and astrocytes contained angiopoietin-1 after FPI, and brain microvessels also contained phosphorylated Tie-2. Treatment with endothelin-1 (100 nM) decreased angiopoietin-1 production in cultured astrocytes and the effect was inhibited by BQ788 (1 μM). Five days after FPI, increased extravasation of Evans blue dye accompanied by reduction in claudin-5, occludin, and zonula occludens-1 proteins were observed in mouse cerebrum while these effects of FPI were reduced by BQ788 and exogenous angiopoietin-1 (1 μg/day, i.c.v.). The effects of BQ788 were inhibited by co-administration of a Tie-2 kinase inhibitor (40 nmol/day, i.c.v.). These results suggest that BQ788 administration after traumatic brain injury promotes recovery of BBB function through activation of the angiopoietin-1/Tie-2 signal.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: