Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 116 papers

5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice.

  • Sylvia Montañez‎ et al.
  • Neurochemistry international‎
  • 2014‎

The serotonin transporter (SERT) controls the strength and duration of serotonergic neurotransmission by the high-affinity uptake of serotonin (5-HT) from extracellular fluid. SERT is a key target for many psychotherapeutic and abused drugs, therefore understanding how SERT activity and expression are regulated is of fundamental importance. A growing literature suggests that SERT activity is under regulatory control of the 5-HT1B autoreceptor. The present studies made use of mice with a constitutive reduction (5-HT1B+/-) or knockout of 5-HT1B receptors (5-HT1B-/-), as well as mice with a constitutive knockout of SERT (SERT-/-) to further explore the relationship between SERT activity and 5-HT1B receptor expression. High-speed chronoamperometry was used to measure clearance of 5-HT from CA3 region of hippocampus in vivo. Serotonin clearance rate, over a range of 5-HT concentrations, did not differ among 5-HT1B receptor genotypes, nor did [(3)H]cyanoimipramine binding to SERT in this brain region, suggesting that SERT activity is not affected by constitutive reduction or loss of 5-HT1B receptors; alternatively, it might be that other transport mechanisms for 5-HT compensate for loss of 5-HT1B receptors. Consistent with previous reports, we found that the 5-HT1B receptor antagonist, cyanopindolol, inhibited 5-HT clearance in wild-type mice. However, this effect of cyanopindolol was lost in 5-HT1B-/- mice and diminished in 5-HT1B+/- mice, indicating that the 5-HT1B receptor is necessary for cyanopindolol to inhibit 5-HT clearance. Likewise, cyanopindolol was without effect on 5-HT clearance in SERT-/- mice, demonstrating a requirement for the presence of both SERT and 5-HT1B receptors in order for cyanopindolol to inhibit 5-HT clearance in CA3 region of hippocampus. Our findings are consistent with SERT being under the regulatory control of 5-HT1B autoreceptors. Future studies to identify signaling pathways involved may help elucidate novel therapeutic targets for the treatment of psychiatric disorders, particularly those linked to gene variants of the 5-HT1B receptor.


Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go.

  • Javier García-Nafría‎ et al.
  • Nature‎
  • 2018‎

G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of Gs to four different GPCRs have been elucidated1-4, but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT1B receptor (5-HT1BR) bound to the agonist donitriptan and coupled to an engineered Go heterotrimer. In this complex, 5-HT1BR is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the β2-adrenoceptor (β2AR) 3 or the adenosine A2A receptor (A2AR) 1 in complex with Gs. In contrast to the complexes with Gs, the gap between the receptor and the Gβ-subunit in the Go-5-HT1BR complex precludes molecular contacts, and the interface between the Gα-subunit of Go and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the Go α-subunit. The molecular variations between the interfaces of Go and Gs in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.


Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist.

  • Wanchao Yin‎ et al.
  • Cell discovery‎
  • 2018‎

5-hydroxytryptamine (5-HT, also known as serotonin) regulates many physiological processes through the 5-HT receptor family. Here we report the crystal structure of 5-HT1B subtype receptor (5-HT1BR) bound to the psychotropic serotonin receptor inverse agonist methiothepin (MT). Crystallization was facilitated by replacing ICL3 with a novel optimized variant of BRIL (OB1) that enhances the formation of intermolecular polar interactions, making OB1 a potential useful tool for structural studies of membrane proteins. Unlike the agonist ergotamine (ERG), MT occupies only the conserved orthosteric binding pocket, explaining the wide spectrum effect of MT on serotonin receptors. Compared with ERG, MT shifts toward TM6 and sterically pushes residues W3276.48, F3306.50 and F3316.51 from inside the orthosteric binding pocket, leading to an outward movement of the extracellular end and a corresponding inward shift of the intracellular end of TM6, a feature shared by other reported inactive G protein-coupled receptor (GPCR) structures. Together with the previous agonist-bound serotonin receptor structures, the inverse agonist-bound 5-HT1BR structure identifies a basis for the ligand-mediated switch of 5-HT1BR activity and provides a structural understanding of the inactivation mechanism of 5-HT1BR and some other class A GPCRs, characterized by ligand-induced outward movement of the extracellular end of TM6 that is coupled with inward movement of the cytoplasmic end of this helix.


The Effect of Serotonin Receptor 5-HT1B on Lateral Inhibition between Spiny Projection Neurons in the Mouse Striatum.

  • Stefan Pommer‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model.

  • Ana Muñoz‎ et al.
  • Experimental neurology‎
  • 2009‎

5-HT1 receptor agonists have been shown to reduce abnormal involuntary movements (AIMs) in the rat and monkey models of L-DOPA-induced dyskinesia. Different mechanisms have been proposed to underlie this effect. Activation of pre-synaptic 5-HT1 receptors has been suggested to inhibit dysregulated release of dopamine from the serotonin terminals, and thus, abnormal activation of striatal dopamine receptors. Activation of post-synaptic 5-HT1 receptors expressed in non-serotonergic neurons in different brain areas, by contrast, has been shown to result in decreased glutamate and GABA release, which may also contribute to the antidyskinetic effect. To unveil the relative contribution of these mechanisms, we have investigated the effect of increasing doses of 5-HT1A and 5-HT1B receptor agonists on AIMs induced by either L-DOPA or apomorphine. In contrast to L-DOPA-induced AIMs, which were dampened already at low doses of 5-HT1 agonists, reduction of apomorphine-induced AIMs required higher doses. Removal of the serotonin innervation suppressed L-DOPA-induced AIMs, but neither affected apomorphine-induced AIMs nor the inhibiting effect of 5-HT1 agonists on AIMs induced by the direct dopamine agonist, suggesting that such effect is independent on activation of pre-synaptic 5-HT1 receptors.


Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function.

  • P Bonaventure‎ et al.
  • Neuroscience‎
  • 1998‎

The similar pharmacology of the 5-HT1B and 5-HT1D receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [35S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [3H]alniditan). The anatomical patterns of 5-HT1B and 5-HT1D receptor messenger RNA were quite different. While 5-HT1B receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT1D receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT(1B/1D) binding sites (combined) obtained with [3H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT1B receptor labelling in the presence of ketanserin under conditions to occlude 5-HT1D receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT1B and 5-HT1D receptors.


Interaction between 5-HTTLPR and 5-HT1B genotype status enhances cerebral 5-HT1A receptor binding.

  • Pia Baldinger‎ et al.
  • NeuroImage‎
  • 2015‎

Serotonergic neurotransmission is thought to underlie a dynamic interrelation between different key structures of the serotonin system. The serotonin transporter (SERT), which is responsible for the reuptake of serotonin from the synaptic cleft into the neuron, as well as the serotonin-1A (5-HT1A) and -1B (5-HT1B) receptors, inhibitory auto-receptors in the raphe region and projection areas, respectively, are likely to determine serotonin release. Thereby, they are involved in the regulation of extracellular serotonin concentrations and the extent of serotonergic effects in respective projection areas. Complex receptor interactions can be assessed in vivo with positron emission tomography (PET) and single-nucleotide-polymorphisms, which are thought to alter protein expression levels. Due to the complexity of the serotonergic system, gene × gene interactions are likely to regulate transporter and receptor expression and therefore subsequently serotonergic transmission. In this context, we measured 51 healthy subjects (mean age 45.5 ± 12.9, 38 female) with PET using [carbonyl-(11)C]WAY-100635 to determine 5-HT1A receptor binding potential (5-HT1A BPND). Genotyping for rs6296 (HTR1B) and 5-HTTLPR (SERT gene promoter polymorphism) was performed using DNA isolated from whole blood. Voxel-wise whole-brain ANOVA revealed a positive interaction effect of genotype groups (5-HTTLPR: LL, LS+SS and HTR1B: rs6296: CC, GC+GG) on 5-HT1A BPND with peak t-values in the bilateral parahippocampal gyrus. More specifically, highest 5-HT1A BPND was identified for individuals homozygous for both the L-allele of 5-HTTLPR and the C-allele of rs6296. This finding suggests that the interaction between two major serotonergic structures involved in serotonin release, specifically the SERT and 5-HT1B receptor, results in a modification of the inhibitory serotonergic tone mediated via 5-HT1A receptors.


Development of 2-Aminotetralin-Type Serotonin 5-HT1 Agonists: Molecular Determinants for Selective Binding and Signaling at 5-HT1A, 5-HT1B, 5-HT1D, and 5-HT1F Receptors.

  • Ryan P McGlynn‎ et al.
  • ACS chemical neuroscience‎
  • 2024‎

The serotonin (5-hydroxytryptamine, 5-HT) 5-HT1 G-protein coupled receptor subtypes (5-HT1A/1B/1D/1E/1F) share a high sequence homology, confounding development of subtype-specific ligands. This study used a 5-HT1 structure-based ligand design approach to develop subtype-selective ligands using a 5-substituted-2-aminotetralin (5-SAT) chemotype, leveraging results from pharmacological, molecular modeling, and mutagenesis studies to delineate molecular determinants for 5-SAT binding and function at 5-HT1 subtypes. 5-SATs demonstrated high affinity (Ki ≤ 25 nM) and at least 50-fold stereoselective preference ([2S] > [2R]) at 5-HT1A, 5-HT1B, and 5-HT1D receptors but essentially nil affinity (Ki > 1 μM) at 5-HT1F receptors. The 5-SATs tested were agonists with varying degrees of potency and efficacy, depending on chemotype substitution and 5-HT1 receptor subtype. Models were built from the 5-HT1A (cryo-EM), 5-HT1B (crystal), and 5-HT1D (cryo-EM) structures, and 5-SATs underwent docking studies with up to 1 μs molecular dynamics simulations. 5-SAT interactions observed at positions 3.33, 5.38, 5.42, 5.43, and 7.39 of 5-HT1 subtypes were confirmed with point mutation experiments. Additional 5-SATs were designed and synthesized to exploit experimental and computational results, yielding a new full efficacy 5-HT1A agonist with 100-fold selectivity over 5-HT1B/1D receptors. The results presented lay the foundation for the development of additional 5-HT1 subtype selective ligands for drug discovery purposes.


Effects of the serotonin 5-HT1B receptor agonist CP 94253 on the locomotor activity and body temperature of preweanling and adult male and female rats.

  • Sanders A McDougall‎ et al.
  • European journal of pharmacology‎
  • 2022‎

Serotonin 5-HT1A receptor agonists increase locomotor activity of both preweanling and adult rodents. The part played by the 5-HT1B receptor in locomotion is less certain, with preliminary evidence suggesting that the actions of 5-HT1B receptor agonists are not uniform across ontogeny. To more fully examine the role of 5-HT1B receptors, locomotor activity and axillary temperatures of preweanling and adult male and female rats was assessed. In the first experiment, adult (PD 70) and preweanling (PD 10 and PD 15) male and female rats were injected with the 5-HT1B agonist CP 94253 (2.5-10 mg/kg) immediately before locomotor activity testing and 60 min before axillary temperatures were recorded. In the second experiment, specificity of drug action was determined in PD 10 rats by administering saline, WAY 100635 (a 5-HT1A antagonist), or GR 127935 (a 5-HT1B antagonist) 30 min before CP 94253 (10 mg/kg) treatment. CP 94253 significantly increased the locomotor activity of preweanling rats on PD 10, an effect that was fully attenuated by GR 127935. Conversely, CP 94253 significantly decreased the locomotor activity of male and female adult rats, while CP 94253 did not affect the locomotor activity of PD 15 rats. Regardless of age, CP 94253 (2.5-10 mg/kg) significantly reduced the axillary temperatures of preweanling and adult rats. When considered together, these results show that 5-HT1B receptor stimulation activates motor circuits in PD 10 rats; whereas, 5-HT1B receptor agonism reduces the overall locomotor activity of adult rats, perhaps by blunting exploratory tendencies.


Prenatal activation of 5-HT2A receptor induces expression of 5-HT1B receptor in phrenic motoneurons and alters the organization of their premotor network in newborn mice.

  • Hélène Bras‎ et al.
  • The European journal of neuroscience‎
  • 2008‎

In newborn mice of the control [C3H/HeJ (C3H)] and monoamine oxidase A-deficient (Tg8) strains, in which levels of endogenous serotonin (5-HT) were drastically increased, we investigated how 5-HT system dysregulation affected the maturation of phrenic motoneurons (PhMns), which innervate the diaphragm. First, using immunocytochemistry and confocal microscopy, we observed a 5-HT(2A) receptor (5-HT(2A)-R) expression in PhMns of both C3H and Tg8 neonates at the somatic and dendritic levels, whereas 5-HT(1B) receptor (5-HT(1B)-R) expression was observed only in Tg8 PhMns at the somatic level. We investigated the interactions between 5-HT(2A)-R and 5-HT(1B)-R during maturation by treating pregnant C3H mice with a 5-HT(2A)-R agonist (2,5-dimethoxy-4-iodoamphetamine hydrochloride). This pharmacological overactivation of 5-HT(2A)-R induced a somatic expression of 5-HT(1B)-R in PhMns of their progeny. Conversely, treatment of pregnant Tg8 mice with a 5-HT(2A)-R antagonist (ketanserin) decreased the 5-HT(1B)-R density in PhMns of their progeny. Second, using retrograde transneuronal tracing with rabies virus injected into the diaphragm of Tg8 and C3H neonates, we studied the organization of the premotor network driving PhMns. The interneuronal network monosynaptically connected to PhMns was much more extensive in Tg8 than in C3H neonates. However, treatment of pregnant C3H mice with 2,5-dimethoxy-4-iodoamphetamine hydrochloride switched the premotoneuronal network of their progeny from a C3H- to a Tg8-like pattern. These results show that a prenatal 5-HT excess affects, via the overactivation of 5-HT(2A)-R, the expression of 5-HT(1B)-R in PhMns and the organization of their premotor network.


Distribution of 5-HT1B and 5-HT1D receptors in the inner ear.

  • Seong-Ki Ahn‎ et al.
  • Brain research‎
  • 2010‎

Migraine and anxiety disorders are frequently co-morbid with balance disorders. This study examined the relative distribution of subtypes of serotonin (5-HT) receptor in the inner ear of monkeys and rats. Most vestibular ganglion cells were immunoreactive for 5-HT(1B) and 5-HT(1D) receptors in macaques and rats. In the inner ear, 5-HT(1B) and 5-HT(1D) receptor immunopositivity was associated with endothelial cells of the vestibular ganglion, spiral ganglion, vestibulocochlear nerve, spiral ligament and stria vascularis. It was noteworthy that 5-HT(1B) and 5-HT(1D) receptors are expressed in parallel sites in peripheral vestibular and trigeminal systems, which may be a factor underlying the efficacy of triptans in treating migraine and migrainous vertigo. Because the vestibular ganglion and trigeminal ganglion are both within the subarachnoid space, an interaction between 5-HT(1B) and TRPV1 receptors on blood vessel and ganglion cells may also contribute to the vasospasm and the comorbid headache, dizziness, nausea and vomiting that accompany subarachnoid hemorrhage.


A Novel 5-HT1B Receptor Agonist of Herbal Compounds and One of the Therapeutic Uses for Alzheimer's Disease.

  • Yang Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

The serotonin receptor 5-HT1B is widely expressed in the central nervous system and has been considered a drug target in a variety of cognitive and psychiatric disorders. The anti-inflammatory effects of 5-HT1B agonists may present a promising approach for Alzheimer's disease (AD) treatment. Herbal antidepressants used in the treatment of AD have shown functional overlap between the active compounds and 5-HT1B receptor stimulation. Therefore, compounds in these medicinal plants that target and stimulate 5-HT1B deserve careful study. Molecular docking, drug affinity responsive target stability, cellular thermal shift assay, fluorescence resonance energy transfer (FRET), and extracellular regulated protein kinases (ERK) 1/2 phosphorylation tests were used to identify emodin-8-O-β-d-glucopyranoside (EG), a compound from Chinese medicinal plants with cognitive deficit attenuating and antidepressant effects, as an agonist of 5-HT1B. EG selectively targeted 5-HT1B and activated the 5-HT1B-induced signaling pathway. The activated 5-HT1B pathway suppressed tumor necrosis factor (TNF)-α levels, thereby protecting neural cells against beta-amyloid (Aβ)-induced death. Moreover, the agonist activity of EG towards 5-HT1B receptor, in FRET and ERK1/2 phosphorylation, was antagonized by SB 224289, a 5-HT1B antagonist. In addition, EG relieved AD symptoms in transgenic worm models. These results suggested that 5-HT1B receptor activation by EG positively affected Aβ-related inflammatory process regulation and neural death resistance, which were reversed by antagonist SB 224289. The active compounds such as EG might act as potential therapeutic agents through targeting and stimulating 5-HT1B receptor for AD and other serotonin-related disorders. This study describes methods for identification of 5-HT1B agonists from herbal compounds and for evaluating agonists with biological functions, providing preliminary information on medicinal herbal pharmacology.


Presynaptic 5-HT1B receptor-mediated synaptic suppression to the subplate neurons in the somatosensory cortex of neonatal rats.

  • Chun-Chieh Liao‎ et al.
  • Neuropharmacology‎
  • 2014‎

Serotonin (5-HT), the target of numerous psychiatric medicines, plays important roles in neural development. In this study we examined the direct effects of 5-HT on the physiological properties of neurons in the cortical subplate, a structure that develops early in life and is important for the maturation of cortical circuits. Acute brain slices were prepared from neonatal rats and the intrinsic and synaptic properties of subplate neurons (SPns) were evaluated before and after 5-HT bath-application. In all concentrations tested, 5-HT did not affect the intrinsic properties of SPns. However, thalamus-evoked excitatory postsynaptic currents (eEPSCs) in SPn were significantly suppressed by 5-HT in a dose-dependent manner. Because 5-HT did not affect AMPA- or NMDA-induced currents, it is unlikely that a 5-HT-mediated postsynaptic mechanism reduced EPSCs. Subsequent to 5-HT application, increased paired-pulse ratios and decreased MK-801 blocking rates were noted, indicating the presence of a presynaptic 5-HT receptor-mediated suppressive effect in the thalamocortical afferent (TCA)-SPn synapses. To elucidate the type(s) of 5-HT receptor involved in this process, various 5-HT receptor agonists and antagonists were tested. CP93129, a 5-HT(1B) receptor agonist, mimicked the effect of 5-HT and in the contrary, the 5-HT(1B) receptor antagonist SB224289 prevented 5-HT-mediated synaptic suppression. Our cumulative data demonstrated the presynaptic 5-HT(1B) receptor-mediated suppressive effect on the excitatory synapses between TCAs and SPns in the somatosensory cortex of neonatal rats. Early exposure to drugs that might interrupt 5-HT homeostasis should be considered.


Amphetamine Self-Administration and Its Extinction Alter the 5-HT1B Receptor Protein Levels in Designated Structures of the Rat Brain.

  • Joanna Miszkiel‎ et al.
  • Neurotoxicity research‎
  • 2019‎

Manipulation of the serotonin (5-HT)1B receptors can modify the behavioral effects of amphetamine including its reinforcing properties. Focus of this study was to examine changes in 5-HT1B receptor protein expression in several brain structures linked to substance drug disorder in different stages of amphetamine addiction-single session of amphetamine self-administration, 20 consecutive days of amphetamine self-administration, and 3 and 14 days of extinction from chronic drug intake. "Yoked" procedure was employed to set apart pharmacological and motivational effects of amphetamine intoxication. Immunohistofluorescence was performed on brain slices containing the following regions: nucleus accumbens (NAc) shell and core, globus pallidum (GP) lateral and ventral, hippocampus (HIP), substantia nigra (SN), and ventral tegmental area (VTA). Single amphetamine session decreased the amount of 5-HT1B receptors in SN, VTA, and HIP in active and yoked rats. On the contrary, 20 days of chronic amphetamine exposure triggered elevation of 5-HT1B receptors exclusively in animals that voluntarily administered the drug in NAc core, GP ventral, and HIP. Furthermore, 14-day (but not 3-day) extinction from amphetamine increased the 5-HT1B receptor expression in ventral and lateral GP, HIP, and SN. This study is the first to demonstrate that exposure to amphetamine and its extinction alter the expression of 5-HT1B receptors in various rat brain regions, and those changes seem to be transient and region specific. Importantly, since increased expression of 5-HT1B receptor after chronic amphetamine self-administration was limited only to active group of animals, we suggest that 5-HT1B receptor is linked to motivational aspect of addiction.


Cocaine increases 5-HT1B mRNA in rat nucleus accumbens shell neurons.

  • B J Hoplight‎ et al.
  • Neuropharmacology‎
  • 2007‎

Serotonin 5-HT(1B) receptors modulate behavioral responses to cocaine, but the effects of cocaine on endogenous 5-HT(1B) receptor expression are not known. Therefore, we examined the effect of binge cocaine administration on 5-HT1B mRNA expression in rat brain. We found that chronic, but not acute, binge cocaine exposure increased 5-HT(1B) mRNA by approximately 80% in nucleus accumbens shell and dorsal striatum. Surprisingly, 5-HT(1B) mRNA was increased in nucleus accumbens shell after chronic vehicle treatment as well, but this effect was driven by animals that were housed with cocaine-treated animals. Thus, 5-HT(1B) mRNA is upregulated by repeated exposure to cocaine and perhaps by social stress as well; both of these factors are relevant to the risk for relapse in cocaine addiction.


Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

  • David Rodríguez‎ et al.
  • Structure (London, England : 1993)‎
  • 2014‎

The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.


Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram.

  • Robert L Gannon‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2009‎

Though serotonergic mechanisms modulate circadian rhythms, roles of individual serotonin (5-HT) receptors remain uncertain since data are lacking for antagonists. Herein, both the 5-HT(5A) receptor antagonist, A843277 (10 mg/kg), and the 5-HT(1B) antagonist, SB224289 (1 mg/kg), inhibited light-induced phase advances in hamster circadian wheel-running rhythms. Conversely, though 5-HT(1A) and 5-HT(7) receptors are likewise implicated in circadian scheduling, their blockade by WAY100635 (0.5 mg/kg) and SB269970 (1 mg/kg), respectively, was ineffective. Since actions of 5-HT reuptake inhibitors are modified by antagonists, we evaluated their influence on suppression of phase advances by citalopram (10 mg/kg). Its action was potentiated by WAY100635 and the 5-HT(2C) antagonist, SB242084 (1 mg/kg), but not by A842377, SB224289, SB269970, and antagonists at 5-HT(2A) (MDL100907) and 5-HT(6) (SB399885) receptors. In conclusion, this is the first in vivo evidence for an influence of 5-HT(5A) receptors upon circadian rhythms, but no single class of 5-HT receptor mediates their control by citalopram.


Pharmacological evidence for an abstinence-induced switch in 5-HT1B receptor modulation of cocaine self-administration and cocaine-seeking behavior.

  • Nathan S Pentkowski‎ et al.
  • ACS chemical neuroscience‎
  • 2014‎

Studies examining serotonin-1B (5-HT1B) receptor manipulations on cocaine self-administration and cocaine-seeking behavior initially seemed discrepant. However, we recently suggested based on viral-mediated 5-HT1B-receptor gene transfer that the discrepancies are likely due to differences in the length of abstinence from cocaine prior to testing. To further validate our findings pharmacologically, we examined the effects of the selective 5-HT1B receptor agonist CP 94,253 (5.6 mg/kg, s.c.) on cocaine self-administration during maintenance and after a period of protracted abstinence with or without daily extinction training. We also examined agonist effects on cocaine-seeking behavior at different time points during abstinence. During maintenance, CP 94,253 shifted the cocaine self-administration dose-effect function on an FR5 schedule of reinforcement to the left, whereas following 21 days of abstinence CP 94,253 downshifted the function and also decreased responding on a progressive ratio schedule of reinforcement regardless of extinction history. CP 94,253 also attenuated cue-elicited and cocaine-primed drug-seeking behavior following 5 days, but not 1 day, of forced abstinence. The attenuating effects of CP 94,253 on the descending limb of the cocaine dose-effect function were blocked by the selective 5-HT1B receptor antagonist SB 224289 (5 mg/kg, i.p.) at both time points, indicating 5-HT1B receptor mediation. The results support a switch in 5-HT1B receptor modulation of cocaine reinforcement from facilitatory during self-administration maintenance to inhibitory during protracted abstinence. These findings suggest that the 5-HT1B receptor may be a novel target for developing medication for treating cocaine dependence.


Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation.

  • Hiroto Nakayama‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2014‎

We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin-dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists.


Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11.

  • T M Eriksson‎ et al.
  • Molecular psychiatry‎
  • 2013‎

Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: