Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Constitutive proteolysis of the ErbB-4 receptor tyrosine kinase by a unique, sequential mechanism.

  • M Vecchi‎ et al.
  • The Journal of cell biology‎
  • 1997‎

The heregulin receptor tyrosine kinase ErbB-4 is constitutively cleaved, in the presence or absence of ligand, by an exofacial proteolytic activity producing a membrane-anchored cytoplasmic domain fragment of 80 kD. Based on selective sensitivity to inhibitors, the proteolytic activity is identified as that of a metalloprotease. The 80-kD product is tyrosine phosphorylated and retains tyrosine kinase activity. Importantly, the levels of this fragment are controlled by proteasome function. When proteasome activity is inhibited for 6 h, the kinase-active 80-kD ErbB-4 fragment accumulates to a level equivalent to 60% of the initial amount of native ErbB-4 (approximately 10(6) receptors per cell). Hence, proteasome activity is essential to prevent the accumulation of a significant level of ligand-independent, active ErbB-4 tyrosine kinase generated by metalloprotease activity. Proteasome activity, however, does not act on the native ErbB-4 receptor before the metalloprotease-mediated cleavage, as no ErbB-4 fragments accumulate when metalloprotease activity is blocked. Although no ubiquitination of the native ErbB-4 is detected, the 80-kD fragment is polyubiquitinated. The data, therefore, describe a unique pathway for the processing of growth factor receptors, which involves the sequential function of an exofacial metalloprotease and the cytoplasmic proteasome.


A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis.

  • M Lindzen‎ et al.
  • Oncogene‎
  • 2012‎

Epidermal growth factor (EGF)-like growth factors control tumor progression as well as evasion from the toxic effects of chemotherapy. Accordingly, antibodies targeting the cognate receptors, such as EGFR/ErbB-1 and the co-receptor HER2/ErbB-2, are widely used to treat cancer patients, but agents that target the EGF-like growth factors are not available. To circumvent the existence of 11 distinct ErbB ligands, we constructed a soluble fusion protein (hereinafter: TRAP-Fc) comprising truncated extracellular domains of EGFR/ErbB-1 and ErbB-4. The recombinant TRAP-Fc retained high-affinity ligand binding to EGF-like growth factors and partially inhibited growth of a variety of cultured tumor cells. Consistently, TRAP-Fc displayed an inhibitory effect in xenograft models of human cancer, as well as synergy with chemotherapy. Additionally, TRAP-Fc inhibited invasive growth of mammary tumor cells and reduced their metastatic seeding in the lungs of animals. Taken together, the activities displayed by TRAP-Fc reinforce critical roles of EGF-like growth factors in tumor progression, and they warrant further tests of TRAP-Fc in preclinical models.


ErbB-4 and neuregulin expression in the adult mouse olfactory bulb after peripheral denervation.

  • M Oberto‎ et al.
  • The European journal of neuroscience‎
  • 2001‎

ErbB-4 is expressed by the periglomerular and the mitral/tufted cells of the adult mouse olfactory bulb (OB) and in the present work we tested whether this expression is regulated by the olfactory nerve input to the OB. Reversible zinc sulphate lesions of the olfactory mucosa were made in adult mice and the deafferented OB analysed by immunohistochemistry, Western blotting and semiquantitative RT-PCR. Following deafferentation, the expression of erbB-4, erbB-2 and neuregulin-1 (NRG-1) mRNAs in the OB was altered. At early stages (7-14 days) after lesion the levels of expression of olfactory marker protein (OMP), tyrosine hydroxylase (TH), erbB-4 and NRG-1 mRNAs were decreased, whilst expression of erbB-2 increased and that of NRG-2 was not significantly altered. We observed at least two distinct time courses for these expression changes. The lowest amounts of mRNA for erbB-4 and NRG-1 were observed at day 7 after lesion, whilst mRNAs for TH and OMP were lowest at day 14. At day 28 after the lesion, when olfactory receptor neuron axons had reinnervated the olfactory bulb, the expression levels of OMP, TH, erbB-2, erbB-4 and NRG-1 were identical to control values. These results indicate that the expression of erbB-4 mRNA and protein in periglomerular and mitral cells is controlled by peripheral olfactory innervation. The tight correlation in NRG-1 and erbB-4 expression levels also suggests a possible functional link that deserves further exploration.


ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling.

  • D Graus-Porta‎ et al.
  • The EMBO journal‎
  • 1997‎

We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization.


Cardiac ErbB-1/ErbB-2 mutant expression in young adult mice leads to cardiac dysfunction.

  • Viswanathan Rajagopalan‎ et al.
  • American journal of physiology. Heart and circulatory physiology‎
  • 2008‎

Multiple factors lead to the development and maintenance of chronic heart failure. Blockade of ErbB-2 or ErbB-4 tyrosine kinase receptor signaling leads to dilated cardiomyopathy. ErbB-1 may protect the heart against stress-induced injury and its ligand; epidermal growth factor (EGF) increases myocardial contractility, whereas heparin-binding EGF is essential for normal cardiac function. However, the role of ErbB-1 in control of cardiac function is not clear. We hypothesized that ErbB-1 is essential for maintaining adult cardiac function. Using the ecdysone-inducible gene expression system, we expressed humanized cardiomyocyte-specific dominant-negative ErbB-1 mutant receptors (hErbB-1-mut) in young adult mice that block endogenous cardiac ErbB-1 signaling. Molecular, morphological, and physiological tests (under anesthesia) were performed. As a result, hErbB-1-mut was expressed selectively in cardiomyocytes leading to the blockade of endogenous ErbB-1 phosphorylation and ErbB-2 transphosphorylation. An increase in left ventricular mass, atrial natriuretic factor expression, and histological changes were indicative of cardiac hypertrophy. Cardiac dilation, numerous cardiac lesions, and the loss of the clear boundary between cardiac fibrils were noted histologically. Early and long-term hErbB-1-mut induction led to a significant decrease in fractional shortening and to significant increases in left ventricular end-systolic diameter and volume. The treatment of adenylyl cyclase activator (forskolin analog) normalized the depressed cardiac function. Resting cardiac function returned to normal after reversing mutant expression. A 4-day survival rate of transverse-aortic constricted hErbB-1-mut mice was only 20% compared with 100% in controls. In conclusion, these observations indicate that the blockade of cardiac ErbB-1 signaling leads to the blockade of ErbB-2 signaling and that together they result in cardiac dysfunction.


Profiling of ERBB receptors and downstream pathways reveals selectivity and hidden properties of ERBB4 antagonists.

  • Lukša Popović‎ et al.
  • iScience‎
  • 2024‎

ERBB receptor tyrosine kinases are involved in development and diseases like cancer, cardiovascular, neurodevelopmental, and mental disorders. Although existing drugs target ERBB receptors, the next generation of drugs requires enhanced selectivity and understanding of physiological pathway responses to improve efficiency and reduce side effects. To address this, we developed a multilevel barcoded reporter profiling assay, termed 'ERBBprofiler', in living cells to monitor the activity of all ERBB targets and key physiological pathways simultaneously. This assay helps differentiate on-target therapeutic effects from off-target and off-pathway side effects of ERBB antagonists. To challenge the assay, eight established ERBB antagonists were profiled. Known effects were confirmed, and previously uncharacterized properties were discovered, such as pyrotinib's preference for ERBB4 over EGFR. Additionally, two lead compounds selectively targeting ERBB4 were profiled, showing promise for clinical trials. Taken together, this multiparametric profiling approach can guide early-stage drug development and lead to improved future therapeutic interventions.


Hypoglycemia causes dysregulation of Neuregulin 1, ErbB receptors, Ki67 in cerebellum and brainstem during diabetes: Implications in motor function.

  • Madhavi Joshi‎ et al.
  • Behavioural brain research‎
  • 2019‎

Hypoglycemia induced brain injury poses a major setback to optimal blood glucose regulation during diabetes. It causes irreversible injury in several brain regions culminating in improper function. Neuregulin 1 and ErbB receptors are involved in regeneration during adulthood as well as in glucose homeostasis. We intended to understand the influence of extreme discrepancies in glycemic levels on Neuregulin 1, ErbB receptor subtypes and Ki67 expression in relation to motor deficits as a consequence of cellular dysfunction/degeneration in the cerebellum and brainstem during diabetes. Elevated oxidative stress and compromised antioxidant system havocs cerebellum and brainstem related function. Cellular alteration of Purkinje neurons in the cerebellum and presence of axonal spheroids in the brainstem are suggestive of impairment to neural circuits involved in motor function. Down regulation of Neuregulin 1, ErbB 2, ErbB 3, ErbB 4 and Ki67 expression observed during diabetes and hypoglycemia may critically cause regenerative deficiency in cerebellum. The coincident up regulation of Neuregulin 1, ErbB 2, ErbB 3 and ErbB 4 in brainstem during diabetes is an attempt to maintain regenerative homeostasis to ensure its function. However, hypoglycemic insults results in down regulation of Neuregulin 1, ErbB 4 expression that severely compromises their role in brainstem. Grid walking test confirmed motor impairment during diabetes that showed further deterioration due to hypoglycemic stress. Thus altered expression of Neuregulin 1, ErbB receptor subtypes and Ki67 during diabetes and hypoglycemia contributes to reduced cellular proliferation and deficits in motor function.


Erbb4 Deletion from Medium Spiny Neurons of the Nucleus Accumbens Core Induces Schizophrenia-Like Behaviors via Elevated GABAA Receptor α1 Subunit Expression.

  • Hong-Yan Geng‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Medium spiny neurons (MSNs), the major GABAergic projection neurons in the striatum, are implicated in many neuropsychiatric diseases such as schizophrenia, but the underlying mechanisms remain unclear. We found that a deficiency in Erbb4, a schizophrenia risk gene, in MSNs of the nucleus accumbens (NAc) core, but not the dorsomedial striatum, markedly induced schizophrenia-like behaviors such as hyperactivity, abnormal marble-burying behavior, damaged social novelty recognition, and impaired sensorimotor gating function in male mice. Using immunohistochemistry, Western blot, RNA interference, electrophysiology, and behavior test studies, we found that these phenomena were mediated by increased GABAA receptor α1 subunit (GABAAR α1) expression, which enhanced inhibitory synaptic transmission on MSNs. These results suggest that Erbb4 in MSNs of the NAc core may contribute to the pathogenesis of schizophrenia by regulating GABAergic transmission and raise the possibility that GABAAR α1 may therefore serve as a new therapeutic target for schizophrenia.SIGNIFICANCE STATEMENT Although ErbB4 is highly expressed in striatal medium spiny neurons (MSNs), its role in this type of neuron has not been reported previously. The present study demonstrates that Erbb4 deletion in nucleus accumbens (NAc) core MSNs can induce schizophrenia-like behaviors via elevated GABAA receptor α1 subunit (GABAAR α1) expression. To our knowledge, this is the first evidence that ErbB4 signaling in the MSNs is involved in the pathology of schizophrenia. Furthermore, restoration of GABAAR α1 in the NAc core, but not the dorsal medium striatum, alleviated the abnormal behaviors. Here, we highlight the role of the NAc core in the pathogenesis of schizophrenia and suggest that GABAAR α1 may be a potential pharmacological target for its treatment.


Ablation of ErbB4 in parvalbumin-positive interneurons inhibits adult hippocampal neurogenesis through down-regulating BDNF/TrkB expression.

  • Heng Zhang‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

Parvalbumin (PV) positive interneurons in the subgranular zone (SGZ) can regulate adult hippocampal neurogenesis. ErbB4 is mainly expressed in PV neurons in the hippocampus and is crucial for keeping normal function of PV neurons. However, whether ErbB4 in PV interneurons affects the adult hippocampal neurogenesis remains unknown. In the present study, we deleted ErbB4 specifically in PV neurons by crossing PV-Cre mice with ErbB4f/f mice. Results of BrdU labeling and NeuN staining revealed that the proliferation of neural progenitors was increased but the survival and maturation of newborn neurons were decreased in the hippocampus of mice after deleting ErbB4 in PV neurons, suggesting that ErbB4 in PV neurons is closely associated with the process of adult hippocampal neurogenesis. Interestingly, the expression of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), was significantly decreased in the hippocampus of ErbB4-deleted mice. Together, our data suggested that ErbB4 in PV neurons might modulate adult hippocampal neurogenesis by affecting BDNF-TrkB signaling pathway.


NRG1-ErbB4 signaling in the medial amygdala controls mating motivation in adult male mice.

  • Jie Huang‎ et al.
  • Cell reports‎
  • 2024‎

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways.

  • Thea Pugatsch‎ et al.
  • Breast cancer research : BCR‎
  • 2006‎

Cardiac dysfunction is among the serious side effects of therapy with recombinant humanized anti-erbB2 monoclonal antibody. The antibody blocks ErbB-2, a receptor tyrosine kinase and co-receptor for other members of the ErbB and epidermal growth factor families, which is over-expressed on the surface of many malignant cells. ErbB-2 and its ligands neuregulin and ErbB-3/ErbB-4 are involved in survival and growth of cardiomyocytes in both postnatal and adult hearts, and therefore the drug may interrupt the correct functioning of the ErbB-2 pathway.


Betacellulin-Induced α-Cell Proliferation Is Mediated by ErbB3 and ErbB4, and May Contribute to β-Cell Regeneration.

  • Young-Sun Lee‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Betacellulin (BTC), an epidermal growth factor family, is known to promote β-cell regeneration. Recently, pancreatic α-cells have been highlighted as a source of new β-cells. We investigated the effect of BTC on α-cells. Insulin+glucagon+ double stained bihormonal cell levels and pancreatic and duodenal homeobox-1 expression were increased in mice treated with recombinant adenovirus-expressing BTC (rAd-BTC) and β-cell-ablated islet cells treated with BTC. In the islets of rAd-BTC-treated mice, both BrdU+glucagon+ and BrdU+insulin+ cell levels were significantly increased, with BrdU+glucagon+ cells showing the greater increase. Treatment of αTC1-9 cells with BTC significantly increased proliferation and cyclin D2 expression. BTC induced phosphorylation of ErbB receptors in αTC1-9 cells. The proliferative effect of BTC was mediated by ErbB-3 or ErbB-4 receptor kinase. BTC increased phosphorylation of ERK1/2, AKT, and mTOR and PC1/3 expression and GLP-1 production in α-cells, but BTC-induced proliferation was not changed by the GLP-1 receptor antagonist, exendin-9. We suggest that BTC has a direct role in α-cell proliferation via interaction with ErbB-3 and ErbB-4 receptors, and these increased α-cells might be a source of new β-cells.


GSK3β activity alleviates epileptogenesis and limits GluA1 phosphorylation.

  • Malgorzata Urbanska‎ et al.
  • EBioMedicine‎
  • 2019‎

Glycogen synthase kinase-3β (GSK3β) is a key regulator of cellular homeostasis. In neurons, GSK3β contributes to the control of neuronal transmission and plasticity, but its role in epilepsy remains to be defined.


Dynamic Effects of Ventral Hippocampal NRG3/ERBB4 Signaling on Nicotine Withdrawal-Induced Responses.

  • Miranda L Fisher‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 ( NRG3 ) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 ( ERBB4) , have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH). We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca 2+ -dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.


Neuregulin-1/ErbB4 signaling modulates Plasmodium falciparum HRP2-induced damage to brain cortical organoids.

  • Adriana Harbuzariu‎ et al.
  • iScience‎
  • 2022‎

Human cerebral malaria (HCM) is a severe complication of Plasmodium falciparum (P.f.) infection that is characterized by capillary occlusions, rupture of the blood-brain barrier (BBB), perivascular cellular injury, and brain swelling. P.f.histidine-rich protein 2 (HRP2), a byproduct of parasitized red blood cell (pRBC) lysis, crosses the BBB when compromised to cause brain injury. We hypothesized that HRP2-induced neuronal damage can be attenuated by Neuregulin-1 (NRG1), an anti-inflammatory neuroprotective factor. Using brain cortical organoids, we determined that HRP2 upregulated cell death and inflammatory markers and disorganized brain organoid tissue. We identified toll-like receptors (TLR1 and 2) as potential mediators of HRP2-induced cellular damage and inflammation. Exogenous acute treatment of organoids with NRG1 attenuated HRP2 effects. The results indicate that HRP2 mediates malaria-associated HRP2-induced brain injury and inflammation and that NRG1 may be an effective therapy against HRP2 effects in the brain.


Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung.

  • Zarha Vermeulen‎ et al.
  • American journal of physiology. Heart and circulatory physiology‎
  • 2017‎

The neuregulin-1 (NRG-1)/receptor tyrosine-protein kinase erbB (ErbB) system is an endothelium-controlled paracrine system modulating cardiac performance and adaptation. Recent studies have indicated that NRG-1 has antifibrotic effects in the left ventricle, which were explained by direct actions on cardiac fibroblasts. However, the NRG-1/ErbB system also regulates the function of macrophages. In this study, we hypothesized that the antifibrotic effect of NRG-1 in the heart is at least partially mediated through inhibitory effects on macrophages. We also hypothesized that the antifibrotic effect of NRG-1 may be active in other organs, such as the skin and lung. First, in a mouse model of angiotensin II (ANG II)-induced myocardial hypertrophy and fibrosis, NRG-1 treatment (20 µg·kg-1·day-1 ip) significantly attenuated myocardial hypertrophy and fibrosis and improved passive ventricular stiffness (4 wk). Interestingly, 1 wk after exposure to ANG II, NRG-1 already attenuated myocardial macrophage infiltration and cytokine expression. Furthermore, mice with myeloid-specific deletion of the ErbB4 gene (ErbB4F/FLysM-Cre+/-) showed an intensified myocardial fibrotic response to ANG II. Consistently, NRG-1 activated the ErbB4 receptor in isolated macrophages, inhibited phosphatidylinositide 3-kinase/Akt and STAT3 signaling pathways, and reduced the release of inflammatory cytokines. Further experiments showed that the antifibrotic and anti-inflammatory effects of NRG-1 were reproducible in mouse models of bleomycin-induced dermal and pulmonary fibrosis. Overall, this study demonstrates that the antifibrotic effect of NRG-1 in the heart is linked to anti-inflammatory activity NRG-1/ErbB4 signaling in macrophages. Second, this study shows that NRG-1 has antifibrotic and anti-inflammatory effects in organs other than the heart, such as the skin and lung.NEW & NOTEWORTHY Our study contributes to the understanding of the antifibrotic effect of neuregulin-1 during myocardial remodeling. Here, we show that the antifibrotic effect of neuregulin-1 is at least partially mediated through anti-inflammatory activity, linked to receptor tyrosine-protein kinase erbB-4 activation in macrophages. Furthermore, we show that this effect is also present outside the heart.


HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients.

  • V Martin‎ et al.
  • British journal of cancer‎
  • 2013‎

In metastatic colorectal cancer (mCRC), KRAS is the only validated biomarker used to select patients for administration of epidermal growth factor receptor (EGFR)-targeted therapies. To identify additional predictive markers, we investigated the importance of HER2, the primary EGFR dimerisation partner, in this particular disease.


Plasma Protein Profiling Reveal Osteoprotegerin as a Marker of Prognostic Impact for Colorectal Cancer.

  • Helgi Birgisson‎ et al.
  • Translational oncology‎
  • 2018‎

Due to difficulties in predicting recurrences in colorectal cancer stages II and III, reliable prognostic biomarkers could be a breakthrough for individualized treatment and follow-up.


The PTN-PTPRZ signal activates the AFAP1L2-dependent PI3K-AKT pathway for oligodendrocyte differentiation: Targeted inactivation of PTPRZ activity in mice.

  • Naomi Tanga‎ et al.
  • Glia‎
  • 2019‎

Protein tyrosine phosphatase receptor type Z (PTPRZ) maintains oligodendrocyte precursor cells (OPCs) in an undifferentiated state. The inhibition of PTPase by its ligand pleiotrophin (PTN) promotes OPC differentiation; however, the substrate molecules of PTPRZ involved in the differentiation have not yet been elucidated in detail. We herein demonstrated that the tyrosine phosphorylation of AFAP1L2, paxillin, ERBB4, GIT1, p190RhoGAP, and NYAP2 was enhanced in OPC-like OL1 cells by a treatment with PTN. AFAP1L2, an adaptor protein involved in the PI3K-AKT pathway, exhibited the strongest response to PTN. PTPRZ dephosphorylated AFAP1L2 at tyrosine residues in vitro and in HEK293T cells. In OL1 cells, the knockdown of AFAP1L2 or application of a PI3K inhibitor suppressed cell differentiation as well as the PTN-induced phosphorylation of AKT and mTOR. We generated a knock-in mouse harboring a catalytically inactive Cys to Ser (CS) mutation in the PTPase domain. The phosphorylation levels of AFAP1L2, AKT, and mTOR were higher, and the expression of oligodendrocyte markers, including myelin basic protein (MBP) and myelin regulatory factor (MYRF), was stronger in CS knock-in brains than in wild-type brains on postnatal day 10; however, these differences mostly disappeared in the adult stage. Adult CS knock-in mice exhibited earlier remyelination after cuprizone-induced demyelination through the accelerated differentiation of OPCs. These phenotypes in CS knock-in mice were similar to those in Ptprz-deficient mice. Therefore, we conclude that the PTN-PTPRZ signal stimulates OPC differentiation partly by enhancing the tyrosine phosphorylation of AFAP1L2 in order to activate the PI3K-AKT pathway.


Nrg1 haploinsufficiency alters inhibitory cortical circuits.

  • Carmen Navarro-Gonzalez‎ et al.
  • Neurobiology of disease‎
  • 2021‎

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: