Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 9,683 papers

Intravesicular epidermal growth factor receptor subject to retrograde trafficking drives epidermal growth factor-dependent migration.

  • Sabrina Maisel‎ et al.
  • Oncotarget‎
  • 2018‎

The Epidermal Growth Factor Receptor (EGFR) is frequently mutated and overexpressed in metastatic cancer. Although EGFR is a transmembrane tyrosine kinase localized to the basolateral membrane in normal epithelium, it is frequently found intracellularly localized in transformed cells. We have previously demonstrated the epithelial adaptor protein mucin 1 (MUC1) alters trafficking of EGFR, inhibiting its degradation and promoting its translocation to the nucleus, where it can directly modulate gene transcription. Here, we demonstrate that MUC1 promotes the retention of EGF-bound EGFR in Early Endosome Antigen1 (EEA1)-positive vesicles while preventing its trafficking to the lysosome. These events result in the accumulation of endosomal vesicles harboring active receptor throughout the cell and a reorganization of the actin cytoskeleton. EGF-dependent cell migration and filopodia formation is reliant upon this altered trafficking, and can be prevented by blocking retrograde trafficking. Together, these results indicate that intracellular EGFR may play an essential role in cancer metastasis and a potential mechanism for the failure of therapeutic antibodies in EGFR-driven metastatic breast cancer.


Sensitivities to various epidermal growth factor receptor-tyrosine kinase inhibitors of uncommon epidermal growth factor receptor mutations L861Q and S768I: What is the optimal epidermal growth factor receptor-tyrosine kinase inhibitor?

  • Eri Banno‎ et al.
  • Cancer science‎
  • 2016‎

Most patients with non-small cell lung cancer (NSCLC) harboring common epidermal growth factor receptor (EGFR) mutations, such as deletions in exon 19 or the L858R mutation in exon 21, respond dramatically to EGFR tyrosine kinase inhibitors (EGFR-TKI), and their sensitivities to various EGFR-TKI have been well characterized. Our previous article showed the in vitro sensitivities of EGFR exon 18 mutations to EGFR-TKI, but little information regarding the sensitivities of other uncommon EGFR mutations is available. First, stable transfectant Ba/F3 cell lines harboring EGFR L858R (Ba/F3-L858R), L861Q (Ba/F3-L861Q) or S768I (Ba/F3-S768I) mutations were created and their drug sensitivities to various EGFR-TKI were examined. Both the Ba/F3-L861Q and Ba/F3-S768I cell lines were less sensitive to erlotinib, compared with the Ba/F3-L858R cell line, but their sensitivities to afatinib were similar to that of the Ba/F3-L858R cell line. The Ba/F3-L861Q cell line was similarly sensitive and the Ba/F3-S768I cell line was less sensitive to osimertinib, compared with the Ba/F3-L858R cell line. The results of western blot analyses were consistent with these sensitivities. Next, similar experiments were also performed using the KYSE270 (L861Q) and KYSE 450 (S768I) cell lines, and their results were compatible with those of the transfectant Ba/F3 cell lines. Our findings suggest that NSCLC harboring the EGFR L861Q mutation might be sensitive to afatinib or osimertinib and that NSCLC harboring the EGFR S768I mutation might be sensitive to afatinib. Overall, afatinib might be the optimal EGFR-TKI against these uncommon EGFR mutations.


IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity.

  • H Shiraha‎ et al.
  • The Journal of cell biology‎
  • 1999‎

During wound healing, fibroblasts are recruited from the surrounding tissue to accomplish repair. The requisite migration and proliferation of the fibroblasts is promoted by growth factors including those that activate the epidermal growth factor receptor (EGFR). Counterstimulatory factors in wound fluid are postulated to limit this response; among these factors is the ELR-negative CXC chemokine, interferon inducible protein-10 (IP-10). We report here that IP-10 inhibited EGF- and heparin-binding EGF-like growth factor-induced Hs68 human dermal fibroblast motility in a dose-dependent manner (to 52% and 44%, respectively, at 50 ng/ml IP-10), whereas IP-10 had no effect on either basal or EGFR-mediated mitogenesis (96 +/- 15% at 50 ng/ml). These data demonstrate for the first time a counterstimulatory effect of IP-10 on a specific induced fibroblast response, EGFR-mediated motility. To define the molecular basis of this negative transmodulation of EGFR signaling, we found that IP-10 did not adversely impact receptor or immediate postreceptor signaling as determined by tyrosyl phosphorylation of EGFR and two major downstream effectors phospholipase C-gamma and erk mitogen-activated protein kinases. Morphological studies suggested which biophysical steps may be affected by demonstrating that IP-10 treatment resulted in an elongated cell morphology reminiscent of failure to detach the uropod; in support of this, IP-10 pretreatment inhibited EGF-induced cell detachment. These data suggested that calpain activity may be involved. The cell permeant agent, calpain inhibitor I, limited EGF-induced motility and de-adhesion similarly to IP-10. IP-10 also prevented EGF- induced calpain activation (reduced by 71 +/- 7%). That this inhibition of EGF-induced calpain activity was secondary to IP-10 initiating a cAMP-protein kinase A-calpain cascade is supported by the following evidence: (a) the cell permeant analogue 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) prevented EGF-induced calpain activity and motility; (b) other ELR-negative CXC chemokines, monokine induced by IFN-gamma and platelet factor 4 that also generate cAMP, inhibited EGF-induced cell migration and calpain activation; and (c) the protein kinase A inhibitor Rp-8-Br-cAMPS abrogated IP-10 inhibition of cell migration, cell detachment, and calpain activation. Our findings provide a model by which IP-10 suppresses EGF-induced cell motility by inhibiting EGF-induced detachment of the trailing edges of motile cells.


Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT).

  • Mohammad R Siddiqui‎ et al.
  • Scientific reports‎
  • 2019‎

Bladder cancer (BC) is heterogeneous and expresses various cell surface targets. Photoimmunotherapy (PIT) involves monoclonal antibodies (MAbs) conjugated to a photoabsorber (PA), IR Dye 700Dx, and then activated by near infra-red light (NIR) to specifically target tumors. We have demonstrated that tumors expressing EGFR can be targeted with PIT. However, PIT may be less effective when a tumor lacks "overwhelming" expression of a single target such as EGFR. We present a combinatorial PIT approach for targeting BC expressing EGFR and HER2, using PA- labeled panitumumab (pan) and trastuzumab (tra), respectively. Human BC tissues and cell lines were analyzed for EGFR and HER2 expression. Efficacy of PA-labeled MAbs singly and in combination was analyzed. About 45% of BC tissues stain for both EGFR and HER2. In vitro, the combination of pan IR700 and tra IR700 with NIR was more efficacious than either agent alone. Tumor xenografts treated with combination PIT showed significant tumor growth retardation. Combination PIT is a promising approach for treating BC with low/moderate expression of surface receptors. In addition, given the molecular heterogeneity of bladder cancer, targeting more than one surface receptor may allow for more effective cell death across different bladder tumors.


Kindlin-1 Regulates Epidermal Growth Factor Receptor Signaling.

  • Magdalene Michael‎ et al.
  • The Journal of investigative dermatology‎
  • 2019‎

Kindler syndrome is an autosomal recessive genodermatosis that results from mutations in the FERMT1 gene encoding t kindlin-1. Kindlin-1 localizes to focal adhesion and is known to contribute to the activation of integrin receptors. Most cases of Kindler syndrome show a reduction or complete absence of kindlin-1 in keratinocytes, resulting in defective integrin activation, cell adhesion, and migration. However, roles for kindlin-1 beyond integrin activation remain poorly defined. In this study we show that skin and keratinocytes from Kindler syndrome patients have significantly reduced expression levels of the EGFR, resulting in defective EGF-dependent signaling and cell migration. Mechanistically, we show that kindlin-1 can associate directly with EGFR in vitro and in keratinocytes in an EGF-dependent, integrin-independent manner and that formation of this complex is required for EGF-dependent migration. We further show that kindlin-1 acts to protect EGFR from lysosomal-mediated degradation. This shows a new role for kindlin-1 that has implications for understanding Kindler syndrome disease pathology.


MICAL-like1 mediates epidermal growth factor receptor endocytosis.

  • Nancy Abou-Zeid‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein-Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.


Epidermal growth factor receptor defects in leprechaunism. A multiple growth factor-resistant syndrome.

  • S S Reddy‎ et al.
  • The Journal of clinical investigation‎
  • 1989‎

Leprechaunism is a rare genetic disorder characterized by severe growth retardation and insulin resistance. Maximal epidermal growth factor (EGF) binding was reduced in fibroblasts from three unrelated patients with leprechaunism (Ark-1, Can-1, and Minn-1) compared with control (0.8-2.2%/mg protein vs. 5.5%/mg protein). This was due to a decrease in receptor affinity in Ark-1 and Can-1 and a decrease in receptor number in Minn-1. In all cell lines, EGF-stimulated receptor autophosphorylation was also decreased to 18-60% of control, whereas EGF internalization and degradation was normal. Sphingosine (40 microM), a protein kinase C inhibitor, increased EGF receptor affinity twofold in control cells and six- to nine-fold in cells of leprechaunism. However, sphingosine did not enhance EGF-stimulated receptor autophosphorylation in either the controls or the patients' cells. By contrast, only one of the three cell lines of patients with the type A syndrome demonstrated a decrease in EGF binding and all demonstrated normal or near normal EGF-stimulated receptor autophosphorylation. These data indicate that in patients with leprechaunism, there are functional abnormalities of the EGF receptor, as well as of the insulin receptor, that may contribute to the severity of the syndrome. These data also suggest a role for the insulin receptor in maintaining normal EGF receptor function in these cells.


Placental growth factor is negatively regulated by epidermal growth factor receptor (EGFR) signaling.

  • Carole-Anne Whigham‎ et al.
  • Placenta‎
  • 2021‎

Preeclampsia is associated with reduced pro-angiogenic Placental Growth Factor (PlGF) and increased levels of anti-angiogenic soluble FMS like tyrosine kinase-1 (sFlt-1). We have previously shown that sFlt-1 secretion is positively regulated via the Epidermal Growth Factor Receptor (EGFR) and mitochondrial respiration pathways. We assessed whether these pathways also regulate endothelial and placental secretion of PlGF.


Comparison of epidermal growth factor receptor tyrosine kinase inhibitors for patients with lung adenocarcinoma harboring different epidermal growth factor receptor mutation types.

  • Sojung Park‎ et al.
  • BMC cancer‎
  • 2021‎

Epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs). EGFR mutation types are associated with efficacy of EGFR TKIs. We investigated the clinical outcomes of afatinib, erlotinib, and gefitinib according to EGFR mutation type in patients with lung adenocarcinoma.


A Randomized Controlled Trial of Epidermal Growth Factor Ointment for Treating Epidermal Growth Factor Receptor Inhibitor-Induced Skin Toxicities.

  • Young Saing Kim‎ et al.
  • The oncologist‎
  • 2020‎

The efficacy of epidermal growth factor (EGF) receptor (EGFR) inhibitors in patients with non-small cell lung cancer (NSCLC), pancreatic cancer (PC), or colorectal cancer (CRC) has been demonstrated. However, dermatological reactions to these inhibitors can cause significant physical and psychosocial discomfort. The objective of the present study was to evaluate the efficacy of EGF ointment for EGFR inhibitor-related skin adverse events (ERSEs).


Epidermal growth factor receptor expression in urinary bladder cancer.

  • Dayalu S L Naik‎ et al.
  • Indian journal of urology : IJU : journal of the Urological Society of India‎
  • 2011‎

To evaluate the expression pattern of epidermal growth factor receptor (EGFR) in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2), epidermal growth factor (EGF), interleukin-6 (IL-6), and high risk human papilloma virus (HPV) types 16 and 18.


Epidermal growth factor receptor mutations in colorectal cancer patients.

  • Bo-Young Oh‎ et al.
  • Journal of the Korean Society of Coloproctology‎
  • 2011‎

The epidermal growth factor receptor (EGFR) plays an important role in tumorigenesis and tumor progression of colorectal cancer and leads to the activation of intracellular signaling pathways. The use of anti-EGFR-targeted therapy has increased for patients with colorectal cancer, but patients with EGFR mutations will be resistant to anti-EGFR-targeted therapy. The identification of gene mutations is critical in cancer treatment; therefore, the aim of this study is to investigate the incidences of EGFR mutations in colorectal cancer patients in Korea.


ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor.

  • Diego Alvarado‎ et al.
  • Nature‎
  • 2009‎

The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.


Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes.

  • Geetanjali Kharmate‎ et al.
  • PloS one‎
  • 2016‎

Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa.


Lipocalin-2 Regulates Epidermal Growth Factor Receptor Intracellular Trafficking.

  • Lucie Yammine‎ et al.
  • Cell reports‎
  • 2019‎

Epidermal growth factor receptor (EGFR) activation and lipocalin-2 (Lcn2) expression are frequently observed in the same pathological contexts, such as cancers or chronic kidney disease (CKD). However, the significance of this association is unknown. Here, we describe the role of Lcn2 in regulating EGFR trafficking. We show that Lcn2 increases EGFR cell surface abundance and is required for transforming growth factor α (TGF-α)-induced EGFR recycling to the plasma membrane and sustained activation. Lcn2 binds to the intracellular domain of EGFR in late endosomal compartments and inhibits its lysosomal degradation. Consistently, Lcn2 enhances EGFR-induced cell migration after TGF-α stimulation. In vivo, Lcn2 gene inactivation prevents EGFR recycling to the plasma membrane in an experimental model of CKD. Remarkably, this is associated with a dramatic decrease of renal lesions. Together, our data identify Lcn2 as a key mediator of EGFR trafficking processes. Hence, therapeutic inhibition of Lcn2 may counteract the deleterious effect of EGFR activation.


Epidermal growth factor receptor function in the human urothelium.

  • C Wasén‎ et al.
  • International urology and nephrology‎
  • 2018‎

Epidermal growth factor receptor (EGFr)-targeted therapy may be used in subgroups of patients with urinary bladder cancer. Here we assessed the role of EGFr in urothelial proliferation and migration in a two- and three-dimensional cell culture system.


Assessment of epidermal growth factor receptor status in glioblastomas.

  • Hui-Jun Zhu‎ et al.
  • Asia Oceania journal of nuclear medicine & biology‎
  • 2013‎

Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([(125)I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the expressions and mutation of EGFR were tested with [(125)I] PYK in glioblastoma in vitro and in vivo to determine whether this could be used to predict the sensitivity of glioblastoma to gefitinib treatment.


Epidermal growth factor receptor-dependent maintenance of cardiac contractility.

  • Shuchi Guo‎ et al.
  • Cardiovascular research‎
  • 2022‎

Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodelling.


Estrogen Receptor β1 Expression Patterns Have Different Effects on Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors' Treatment Response in Epidermal Growth Factor Receptor Mutant Lung Adenocarcinoma.

  • Lijuan Zhang‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Estrogen receptor β (ERβ) can regulate cellular signaling through non-genomic mechanisms, potentially promoting resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, the mechanisms underlying the ERβ-mediated resistance to EGFR TKIs remain poorly understood. In this study, we investigated the role of the interaction between ERβ1 and ERβ5 in non-genomic signaling in lung adenocarcinoma. We established PC9 cell lines stably overexpressing ERβ1 or ERβ1/ERβ5. Immunofluorescence revealed that ERβ5 overexpression partly retained ERβ1 in the cytoplasm. Immunoblotting analyses revealed that EGFR pathway activation levels were higher in PC9/ERβ1/5 cells than those in PC9/ERβ1 or control PC9 cells. In the presence of estradiol, PI3K/AKT/mTOR pathway activation levels were higher in ERβ1/5-expressing cells than those in ERβ1-expressing cells. Additionally, PC9/ERβ1/5 cells were less prone to the cytotoxic and pro-apoptotic effects of gefitinib compared with PC9/ERβ1 or control PC9 cells. Cytoplasmic ERβ1 was associated with poor progression-free survival in lung cancer patients treated with EGFR TKIs. These results suggest that cytoplasmic ERβ1 was responsible for EGFR TKI resistance slightly through non-genomic mechanism in EGFR mutant lung adenocarcinoma.


Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma.

  • Martin J Hicks‎ et al.
  • PloS one‎
  • 2016‎

Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: