Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer.

  • Elena Andretta‎ et al.
  • Scientific reports‎
  • 2017‎

EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.


Unliganded EphA3 dimerization promoted by the SAM domain.

  • Deo R Singh‎ et al.
  • The Biochemical journal‎
  • 2015‎

The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.


Epha3 acts as proangiogenic factor in multiple myeloma.

  • Antonella Caivano‎ et al.
  • Oncotarget‎
  • 2017‎

This study investigates the role of ephrin receptor A3 (EphA3) in the angiogenesis of Multiple Myeloma (MM) and the effects of a selective target of EphA3 by a specific monoclonal antibody on primary bone marrow endothelial cells (ECs) of MM patients.EphA3 mRNA and protein were evaluated in ECs of MM patients (MMECs), in ECs of patients with monoclonal gammopathies of undetermined significance (MGECs) and in ECs of healthy subjects (control ECs). The effects of EphA3 targeting by mRNA silencing (siRNA) or by the anti EphA3 antibody on the angiogenesis were evaluated. We found that EphA3 is highly expressed in MMECs compared to the other EC types. Loss of function of EphA3 by siRNA significantly inhibited the ability of MMECs to adhere to fibronectin, to migrate and to form tube like structures in vitro, without affecting cell proliferation or viability. In addition, gene expression profiling showed that knockdown of EphA3 down modulated some molecules that regulate adhesion, migration and invasion processes. Interestingly, EphA3 targeting by an anti EphA3 antibody reduced all the MMEC angiogenesis-related functions in vitro. In conclusion, our findings suggest that EphA3 plays an important role in MM angiogenesis.


Distinctive Structure of the EphA3/Ephrin-A5 Complex Reveals a Dual Mode of Eph Receptor Interaction for Ephrin-A5.

  • Garry Jason Forse‎ et al.
  • PloS one‎
  • 2015‎

The Eph receptor tyrosine kinase/ephrin ligand system regulates a wide spectrum of physiological processes, while its dysregulation has been implicated in cancer progression. The human EphA3 receptor is widely upregulated in the tumor microenvironment and is highly expressed in some types of cancer cells. Furthermore, EphA3 is among the most highly mutated genes in lung cancer and it is also frequently mutated in other cancers. We report the structure of the ligand-binding domain of the EphA3 receptor in complex with its preferred ligand, ephrin-A5. The structure of the complex reveals a pronounced tilt of the ephrin-A5 ligand compared to its orientation when bound to the EphA2 and EphB2 receptors and similar to its orientation when bound to EphA4. This tilt brings an additional area of ephrin-A5 into contact with regions of EphA3 outside the ephrin-binding pocket thereby enlarging the size of the interface, which is consistent with the high binding affinity of ephrin-A5 for EphA3. This large variation in the tilt of ephrin-A5 bound to different Eph receptors has not been previously observed for other ephrins.


EphA3 functions are regulated by collaborating phosphotyrosine residues.

  • Guanfang Shi‎ et al.
  • Cell research‎
  • 2010‎

Ephrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors. Activation of the receptors by ephrin binding results in the phosphorylation of the receptor tyrosine residues. These phosphorylated residues serve as docking sites for many of the downstream signaling pathways. However, the relative contributions of different phosphotyrosine residues remain undefined. In the present study, we mutated each individual tyrosine residues in the cytoplasmic domain of EphA3 receptor and studied the effects using cell migration, process retraction, and growth cone collapse assays. Stimulation of the EphA3 receptor with ephrin-A5 inhibits 293A cell migration, reduces NG108-15 cell neurite outgrowth, and induces growth cone collapse in hippocampal neurons. Mutation of either Y602 or Y779 alone partially decreases EphA3-induced responses. Full abrogation can only be achieved with mutations of both Y602 and Y779. These observations suggest a collaborative model of different downstream pathways.


EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma.

  • Carolin Offenhäuser‎ et al.
  • Cancers‎
  • 2018‎

The EphA3 receptor has recently emerged as a functional tumour-specific therapeutic target in glioblastoma (GBM). EphA3 is significantly elevated in recurrent disease, is most highly expressed on glioma stem cells (GSCs), and has a functional role in maintaining self-renewal and tumourigenesis. An unlabelled EphA3-targeting therapeutic antibody is currently under clinical assessment in recurrent GBM patients. In this study, we assessed the efficacy of EphA3 antibody drug conjugate (ADC) and radioimmunotherapy (RIT) approaches using orthotopic animal xenograft models. Brain uptake studies, using positron emission tomography/computed tomography (PET/CT) imaging, show EphA3 antibodies are effectively delivered across the blood-tumour barrier and accumulate at the tumour site with no observed normal brain reactivity. A robust anti-tumour response, with no toxicity, was observed using EphA3, ADC, and RIT approaches, leading to a significant increase in overall survival. Our current research provides evidence that GBM patients may benefit from pay-loaded EphA3 antibody therapies.


Antibody-mediated depletion of CCR10+EphA3+ cells ameliorates fibrosis in IPF.

  • Miriam S Hohmann‎ et al.
  • JCI insight‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.


EphA3 promotes malignant transformation of colorectal epithelial cells by upregulating oncogenic pathways.

  • Mingqi Li‎ et al.
  • Cancer letters‎
  • 2016‎

Ephrin Type-A Receptor 3 (EphA3) belongs to the ephrin receptor subfamily of the protein tyrosine kinase family, and plays an important role in embryogenesis and neurogenesis. This study aimed to investigate the role of EphA3 in promoting malignant transformation of colorectal epithelial cells, and explore underlying molecular mechanisms. Colorectal cancer tissue specimens from 68 patients were analyzed for EphA3 expression. EphA3 expression levels were manipulated in rat colon epithelial cell lines. We found that EphA3 expression level in tumor tissues was associated with patient age (P = 0.015), tumor differentiation (P = 0.001), and lymph node metastasis (P = 0.039). Overexpression of EphA3 and its constitutively active mutants promoted colony formation, migration and invasion, and tumorigenicity of colon epithelial cells in nude mice. The cDNA and lncRNA microarray profiling data revealed that differentially expressed genes and lncRNAs in EphA3 or mutant-transfected cells were associated with cell proliferation, invasion and angiogenesis. Our findings reveal the mechanisms underlying the oncogenic activities of EphA3 in colorectal cells, which could provide novel targets for the prevention, early diagnosis, and treatment of colorectal cancer.


A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3.

  • Jenni Lahtela‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2013‎

Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16 (INK4a) expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.


Perineuronal Net Protein Neurocan Inhibits NCAM/EphA3 Repellent Signaling in GABAergic Interneurons.

  • Chelsea S Sullivan‎ et al.
  • Scientific reports‎
  • 2018‎

Perineuronal nets (PNNs) are implicated in closure of critical periods of synaptic plasticity in the brain, but the molecular mechanisms by which PNNs regulate synapse development are obscure. A receptor complex of NCAM and EphA3 mediates postnatal remodeling of inhibitory perisomatic synapses of GABAergic interneurons onto pyramidal cells in the mouse frontal cortex necessary for excitatory/inhibitory balance. Here it is shown that enzymatic removal of PNN glycosaminoglycan chains decreased the density of GABAergic perisomatic synapses in mouse organotypic cortical slice cultures. Neurocan, a key component of PNNs, was expressed in postnatal frontal cortex in apposition to perisomatic synapses of parvalbumin-positive interneurons. Polysialylated NCAM (PSA-NCAM), which is required for ephrin-dependent synapse remodeling, bound less efficiently to neurocan than mature, non-PSA-NCAM. Neurocan bound the non-polysialylated form of NCAM at the EphA3 binding site within the immunoglobulin-2 domain. Neurocan inhibited NCAM/EphA3 association, membrane clustering of NCAM/EphA3 in cortical interneuron axons, EphA3 kinase activation, and ephrin-A5-induced growth cone collapse. These studies delineate a novel mechanism wherein neurocan inhibits NCAM/EphA3 signaling and axonal repulsion, which may terminate postnatal remodeling of interneuron axons to stabilize perisomatic synapses in vivo.


Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression.

  • Mary E Vail‎ et al.
  • Cancers‎
  • 2023‎

Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.


The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility.

  • Marwah M Al-Mathkour‎ et al.
  • Scientific reports‎
  • 2022‎

The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.


Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA.

  • Míriam Javier-Torrent‎ et al.
  • eLife‎
  • 2019‎

EphA/ephrin signaling regulates axon growth and guidance of neurons, but whether this process occurs also independently of ephrins is unclear. We show that presenilin-1 (PS1)/γ-secretase is required for axon growth in the developing mouse brain. PS1/γ-secretase mediates axon growth by inhibiting RhoA signaling and cleaving EphA3 independently of ligand to generate an intracellular domain (ICD) fragment that reverses axon defects in PS1/γ-secretase- and EphA3-deficient hippocampal neurons. Proteomic analysis revealed that EphA3 ICD binds to non-muscle myosin IIA (NMIIA) and increases its phosphorylation (Ser1943), which promotes NMIIA filament disassembly and cytoskeleton rearrangement. PS1/γ-secretase-deficient neurons show decreased phosphorylated NMIIA and NMIIA/actin colocalization. Moreover, pharmacological NMII inhibition reverses axon retraction in PS-deficient neurons suggesting that NMIIA mediates PS/EphA3-dependent axon elongation. In conclusion, PS/γ-secretase-dependent EphA3 cleavage mediates axon growth by regulating filament assembly through RhoA signaling and NMIIA, suggesting opposite roles of EphA3 on inhibiting (ligand-dependent) and promoting (receptor processing) axon growth in developing neurons.


KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study.

  • Ronan T Swords‎ et al.
  • Leukemia research‎
  • 2016‎

EphA3 is an Ephrin receptor tyrosine kinase that is overexpressed in most hematologic malignancies. We performed a first-in-human multicenter phase I study of the anti-EphA3 monoclonal antibody KB004 in refractory hematologic malignancies in order to determine safety and tolerability, along with the secondary objectives of pharmacokinetics (PK) and pharmacodynamics (PD) assessments, as well as preliminary assessment of efficacy. Patients were enrolled on a dose escalation phase (DEP) initially, followed by a cohort expansion phase (CEP). KB004 was administered by intravenous infusion on days 1, 8, and 15 of each 21-day cycle in escalating doses. A total of 50 patients (AML 39, MDS/MPN 3, MDS 4, DLBCL 1, MF 3) received KB004 in the DEP; an additional 14 patients were treated on the CEP (AML 8, MDS 6). The most common toxicities were transient grade 1 and grade 2 infusion reactions (IRs) in 79% of patients. IRs were dose limiting above 250mg. Sustained exposure exceeding the predicted effective concentration (1ug/mL) and covering the 7-day interval between doses was achieved above 190mg. Responses were observed in patients with AML, MF, MDS/MPN and MDS. In this study, KB004 was well tolerated and clinically active when given as a weekly infusion.


EphA3 is up-regulated by epidermal growth factor and promotes formation of glioblastoma cell aggregates.

  • Moe Toyama‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

EphA3, a member of the Eph family of receptor tyrosine kinases, has been reported to be overexpressed in some human cancers including glioblastoma. Here, we found that expression of EphA3 is up-regulated in response to epidermal growth factor (EGF) stimulation and promotes formation of cell aggregates in suspension culture of glioblastoma cells. Suppression of EphA3 expression by short hairpin RNA-mediated knockdown or CRISPR/Cas9-mediated gene deletion inhibited EGF-induced promotion of cell aggregate formation, whereas overexpression of EphA3 promoted formation of cell aggregates in suspension culture. EGF-induced EphA3 expression and promotion of cell aggregate formation required Akt activity. Furthermore, N-cadherin, whose expression was regulated by EGF and EphA3, contributed to the formation of cell aggregates in suspension culture. These results suggest that the regulation of EphA3 expression plays a critical role in glioblastoma cell growth in non-adherent conditions.


EPHA3 Could Be a Novel Prognosis Biomarker and Correlates with Immune Infiltrates in Bladder Cancer.

  • Junpeng Liu‎ et al.
  • Cancers‎
  • 2023‎

To assess the mechanism of EPH receptor A3 (EPHA3) and its potential value for immunotherapy in BLCA.


Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting.

  • Liuxiang Chu‎ et al.
  • Drug delivery‎
  • 2018‎

Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma.


EphA3 targeted by miR-3666 contributes to melanoma malignancy via activating ERK1/2 and p38 MAPK pathways.

  • Di Ming‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2022‎

Melanoma is a rare, fatal type of skin tumor. Although EPH receptor A3 (EphA3) is deregulated in melanoma, its detailed role remained uncharacterized. Using real time quantitative PCR analysis and western blotting, EphA3 was identified to be upregulated in melanoma tissues and cells, while miR-3666 showed an opposite expression trend. Cell counting kit-8, scratch wound, and in vivo assays proved that EphA3 silence inhibited the melanoma cell proliferation and migration and retarded tumor growth in vivo. Furthermore, western blotting results displayed that EphA3 silence resulted in a low expression of p38-MAPK and p-ERK1/2. Mechanically, miR-3666 was proved to target EphA3 3'UTR by the luciferase reporter assay. Furthermore, miR-3666 mimic compromised the driven melanoma cell proliferation and migration by EphA3 overexpression. In addition, induction of ERK1/2 and p38 MAPK pathways offset the positive effect of EphA3 overexpression on melanoma cells. In conclusion, miR-3666 downregulated EphA3 expression and retarded melanoma malignancy via inactivating ERK1/2 and p38 MAPK pathways. Hence, miR-3666/EphA3 axis may represent a druggable target against melanoma progression.


EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway.

  • Juan Peng‎ et al.
  • Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine‎
  • 2016‎

Multidrug resistance (MDR) is a major obstacle to the treatment of small cell lung cancer (SCLC). EPHA3 has been revealed to be the most frequently mutated Eph receptor gene in lung cancer with abnormal expression. Growing evidence indicates that the signaling proteins of EPHA3 downstream, including PI3K, BMX and STAT3, play crucial roles in tumorigenesis and cancer progression. To explore the possible role of EPHA3 in MDR, we assessed the influence of EPHA3 on chemoresistance, cell cycle, apoptosis, and tumor growth, as well as the relationship between EPHA3 and the expression of PI3K, BMX, and STAT3 in SCLC. We observed that overexpression of EPHA3 in SCLC cells decreased chemoresistance by increasing apoptosis and inducing G0/G1 arrest, accompanied by reduced phosphorylation of PI3K/BMX/STAT3 signaling pathway. Knockdown of EPHA3 expression generated a resistant phenotype of SCLC, as a result of decreased apoptosis and induced G2/M phase arrest. And re-expression of EPHA3 in these cells reversed the resistant phenotype. Meanwhile, increased phosphorylation of PI3K/BMX/STAT3 signaling pathway was observed in these cells with EPHA3 deficiency. Notably, both PI3K inhibitor (LY294002) and BMX inhibitor (LFM-A13) impaired the chemoresistance enhanced by EPHA3 deficiency in SCLC cell lines. Furthermore, EPHA3 inhibited growth of SCLC cells in vivo and was correlated with longer overall survival of SCLC patients. Thus, we first provide the evidences that EPHA3 is involved in regulating the MDR of SCLC via PI3K/BMX/STAT3 signaling and may be a new therapeutic target in SCLC.


The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis.

  • Jenni Lahtela‎ et al.
  • Disease models & mechanisms‎
  • 2015‎

Treatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas. Our data shows that homozygous or heterozygous loss of EphA3 does not alter the progression of murine adenocarcinomas that result from Kras mutation or loss of Trp53, and we detected negligible postnatal expression of EphA3 in adult wild-type lungs. Yet, EphA3 was expressed in the distal mesenchyme of developing mouse lungs, neighboring the epithelial expression of its Efna1 ligand; this is consistent with the known roles of EPH receptors in embryonic development. However, the partial loss of EphA3 leads only to subtle changes in epithelial Nkx2-1, endothelial Cd31 and mesenchymal Fgf10 RNA expression levels, and no macroscopic phenotypic effects on lung epithelial branching, mesenchymal cell proliferation, or abundance and localization of CD31-positive endothelia. The lack of a discernible lung phenotype in EphA3-null mice might indicate lack of an overt role for EPHA3 in the murine lung, or imply functional redundancy between EPHA receptors. Our study shows how biological complexity can challenge in vivo functional validation of mutations identified in sequencing efforts, and provides an incentive for the design of knock-in or conditional models to assign the role of EPHA3 mutation during lung tumorigenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: