Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,447 papers

Retinal degeneration in two lines of transgenic S334ter rats.

  • G Martinez-Navarrete‎ et al.
  • Experimental eye research‎
  • 2011‎

Aim of this study was to examine synaptic connectivity changes in the retina and the location and rate of apoptosis in transgenic S334ter line-3 and line-5 rats with photoreceptor degeneration. Heterozygous S334ter-line-3 and line-5 at P11-13, P30, P60, P90 and several control non-dystrophic rats (Long Evans and Sprague-Dawley) at P60, were studied anatomically by immunohistochemistry for various cell and synaptic markers, and by PNA and TUNEL label.- S334ter line-3 exhibited the fastest rate of degeneration with an early loss of photoreceptors, with 1-2 layers remaining at P30, and only cones left at P60. Line-5 had 4-5 layers left at P30, and very few rods left at P60-90. In both lines, horizontal cell processes (including dendrites and axon) were diminished at P11-13, showing gaps in the outer plexiform layer (OPL) at P60, and at P90, almost no terminal tips could be seen. Bipolar cells showed a retraction of their dendrites forming clusters along the OPL. Synaptic terminals of A-II amacrine cells in the IPL lost most of their parvalbumin-immunoreactivity. The apoptosis rate was different in both lines. Line-3 rats showed many photoreceptors affected at P11, occupying the innermost part of the outer nuclear layer. Line-5 showed a lower number of apoptotic cells within the same location at P13. In summary, the S334ter line-3 rat has a faster progression of degeneration than line-5. The horizontal and bipolar terminals are already affected at P11-P13 in both models. Apoptosis is related to the mutated rhodopsin transgene; the first photoreceptor cells affected are those close to the OPL.


Transgenic LRRK2 (R1441G) rats-a model for Parkinson disease?

  • Komal T Shaikh‎ et al.
  • PeerJ‎
  • 2015‎

Parkinson disease (PD) is the most common movement disorder, characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra. While the cause of this disease is largely unknown, a rare autosomal dominant familial form of PD is caused by a genetic mutation in the leucine-rich repeat kinase 2 (LRRK2) gene that presumably leads to a gain-of-function of LRRK2 kinase activity. Here, we explored the potential of over expression of this human gene in a new transgenic rat model to serve as an animal model for PD. Commercially available BAC transgenic rats expressing human LRRK2 with the familial PD mutation, R1441G, and their wild-type siblings were tested for deficits in motor function, sensorimotor gating, and higher cognitive function reminiscent of PD through the ages of 3, 6, 9 and 12 months. At 12 months of age, rats were exposed to intraperitoneal injections of the environmental toxin Paraquat or saline. Our results indicate that LRRK2 (R1441G) transgenic rats do not show signs of neurodegeneration and do not develop significant motor or cognitive deficits until the age of 16 months. In addition, LRRK2 (R1441G) transgenic rats did not show increased vulnerability to sub-toxic doses of Paraquat. Gene expression studies indicate that despite genomic presence and initial expression of the transgene, its expression was greatly reduced in our aged rats. We conclude that the transgenic LRRK2 (R1441G) rat is not a valid model for studying the pathology of PD and discuss this in relation to other transgenic rat models.


Conditional ablation of vasopressin-synthesizing neurons in transgenic rats.

  • Jun Watanabe‎ et al.
  • Journal of neuroendocrinology‎
  • 2021‎

Vasopressin-synthesizing neurons are located in several brain regions, including the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON) and suprachiasmatic nucleus (SCN). Vasopressin has been shown to have various functions in the brain, including social recognition memory, stress responses, emotional behaviors and circadian rhythms. The precise physiological functions of vasopressin-synthesizing neurons in specific brain regions remain to be clarified. Conditional ablation of local vasopressin-synthesizing neurons may be a useful tool for investigation of the functions of vasopressin neurons in the regions. In the present study, we characterized a transgenic rat line that expresses a mutated human diphtheria toxin receptor under control of the vasopressin gene promoter. Under a condition of salt loading, which activates the vasopressin gene in the hypothalamic PVN and SON, transgenic rats were i.c.v. injected with diphtheria toxin. Intracerebroventricular administration of diphtheria toxin after salt loading depleted vasopressin-immunoreactive cells in the hypothalamic PVN and SON, but not in the SCN. The number of oxytocin-immunoreactive cells in the hypothalamus was not significantly changed. The rats that received i.c.v. diphtheria toxin after salt loading showed polydipsia and polyuria, which were rescued by peripheral administration of 1-deamino-8-d-arginine vasopressin via an osmotic mini-pump. Intrahypothalamic administration of diphtheria toxin in transgenic rats under a normal hydration condition reduced the number of vasopressin-immunoreactive neurons, but not the number of oxytocin-immunoreactive neurons. The transgenic rat model can be used for selective ablation of vasopressin-synthesizing neurons and may be useful for clarifying roles of vasopressin neurons at least in the hypothalamic PVN and SON in the rat.


Efficient Production of Fluorescent Transgenic Rats using the piggyBac Transposon.

  • Tianda Li‎ et al.
  • Scientific reports‎
  • 2016‎

Rats with fluorescent markers are of great value for studies that trace lineage-specific development, particularly those assessing the differentiation potential of embryonic stem cells (ESCs). The piggyBac (PB) transposon is widely used for the efficient introduction of genetic modifications into genomes, and has already been successfully used to produce transgenic mice and rats. Here, we generated transgenic rats carrying either the desRed fluorescent protein (RFP) gene or the enhanced green fluorescent protein (eGFP) gene by injecting pronuclei with PB plasmids. We showed that the transgenic rats expressed the RFP or eGFP gene in many organs and had the capability to transmit the marker gene to the next generation through germline integration. In addition, rat embryonic stem cells (ESCs) carrying an RFP reporter gene can be derived from the blastocysts of the transgenic rats. Moreover, the RFP gene can be detected in chimeras derived from RFP ESCs via blastocyst injection. This work suggests that PB-mediated transgenesis is a powerful tool to generate transgenic rats expressing fluorescent proteins with high efficiency, and this technique can be used to derive rat ESCs expressing a reporter protein.


Generation and characterization of tissue-type plasminogen activator transgenic rats.

  • Yusuke Ito‎ et al.
  • Journal of thrombosis and thrombolysis‎
  • 2018‎

To address a species difference in the responsiveness to human recombinant tissue-type plasminogen activator (rt-PA) between rats and humans, tPA transgenic (Tg) rats were generated and characterized. In the rats, transcriptional regulation of tPA was designed under the control of the endogenous tPA promoter. There were no significant differences in hematological parameters between the tPA Tg and non Tg rats. Plasma tPA concentration was significantly increased and serum free PAI-1 was significantly decreased in the tPA Tg rats. Significant overexpression of tPA mRNA in five major organs was also confirmed in the tPA Tg rats. In contrast, the extent of tPA mRNA induction by pathophysiological stimuli (focal cerebral ischemia) was comparable in the two strains. Earlier increase in the plasma D-Dimer level was observed in the tPA Tg rats in a model of thromboembolism compared with the non Tg rats. On the other hand, there was no statistically significant prolongation of bleeding time in a rat model of bleeding between the two strains. rt-PA showed dose-related blood flow restoration in a rat model of thromboembolic stroke in the tPA Tg rats from a dose (1 mg/kg, i.v.) similar to clinical doses for human stroke patients. In conclusion, tPA Tg rats, in which tPA is overexpressed and endogenous fibrinolytic activity is enhanced without hemostatic abnormality, were generated. tPA Tg rats would be beneficial for the pharmacological and the toxicological evaluation of rt-PA and other various fibrinolytic enhancers.


Developing tTA transgenic rats for inducible and reversible gene expression.

  • Hongxia Zhou‎ et al.
  • International journal of biological sciences‎
  • 2009‎

To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 microg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 microg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases.


Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.

  • Amanda L Persons‎ et al.
  • PloS one‎
  • 2018‎

The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.


Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

  • Tillmann Weber‎ et al.
  • PloS one‎
  • 2011‎

The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.


An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation.

  • Bhola Shankar Pradhan‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2016‎

Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal.


Detergent-insoluble inclusion constitutes the first pathology in PFN1 transgenic rats.

  • Guixiu Yuan‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

Mutation of profilin 1 (PFN1) can cause amyotrophic lateral sclerosis (ALS). To assess how PFN1 mutation causes the disease, we created transgenic rats with human genomic DNA that harbors both the coding and the regulatory sequences of the human PFN1 gene. Selected transgenic lines expressed human PFN1 with or without the pathogenic mutation C71G at a moderate and a comparable level and in the similar pattern of spatial and temporal expression to rat endogenous PFN1. The artificial effects of arbitrary transgene expression commonly observed in cDNA transgenic animals were minimized in PFN1 transgenic rats. Expression of the mutant, but not the wild type, human PFN1 in rats recapitulated the cardinal features of ALS including the progressive loss of motor neurons and the subsequent denervation atrophy of skeletal muscles. Detergent-insoluble PFN1 inclusions were detected as the first pathology in otherwise asymptomatic transgenic rats expressing mutant human PFN1. The findings suggest that protein aggregation is involved in the neurodegeneration of ALS associated with PFN1 mutation. The resulting rat model is useful to mechanistic study on the ALS.


GFP-transgenic animals for in vivo imaging: rats, rabbits, and pigs.

  • Takashi Murakami‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2012‎

Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. The rat, as with the mouse, has offered important animal models for biology and medical research, and has provided a wealth of physiological and pharmacological data. The larger-body animals, in comparison to the mouse have allowed the application of various physiological and surgical manipulations that may prove to have biological significance. We have further extended the techniques of genetic engineering to rats, rabbits, and pigs, and have created corresponding GFP-transgenic animals. The GFP-positive organs of these animals provide valuable sensors in preclinical settings for cell therapy and transplantation studies. In this chapter, we highlight expression profiles in these animal resources and describe examples of preclinical applications.


Cigarette smoke and nicotine effects on behavior in HIV transgenic rats.

  • Walter Royal‎ et al.
  • Behavioural brain research‎
  • 2022‎

HIV-related neurocognitive impairment can be worsened by cigarette smoking and be more severe in women. Therefore, we analyzed the effects of sex on behavioral function in HIV transgenic (Tg) rats that were exposed to either nicotine alone, to smoke from either nicotine-containing or nicotine-free cigarettes, or non-exposed. The animals were then assessed on the open field test for the total distance traveled and for the fraction of the total distance traveled and the total time spent in the center of the field, and the results then compared to WT rats subjected to the same exposures and testing. Higher total distances indicate greater locomotor activity and a higher center field measures imply a lower anxiety state. Total distances were overall higher for female and for Tg rats exposed to nicotine-free CS. Also, the total distance and both center field measures were overall higher for female rats in the control and nicotine-free CS-exposed groups. This was observed specifically for WT females as compared to WT males and, for the center field measures, for WT females as compared to Tg males. No genotype or sex-related differences were found for rats in the nicotine-free cigarette smoke (CS) and nicotine-containing CS exposed groups. Therefore, nicotine exposure did not impact genotype- and sex-related differences in motor responses and anxiety levels that were found in the control state. However, exposure to the non-nicotine components of CS resulted in locomotor activation in the presence of the HIV genes and was anxiogenic in WT and Tg male animals.


Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats.

  • Rebecca F Rosen‎ et al.
  • Journal of neurochemistry‎
  • 2012‎

Deposition of the amyloid-β (Aβ) peptide in senile plaques and cerebral Aβ angiopathy (CAA) can be stimulated in Aβ-precursor protein (APP)-transgenic mice by the intracerebral injection of dilute brain extracts containing aggregated Aβ seeds. Growing evidence implicates a prion-like mechanism of corruptive protein templating in this phenomenon, in which aggregated Aβ itself is the seed. Unlike prion disease, which can be induced de novo in animals that are unlikely to spontaneously develop the disease, previous experiments with Aβ seeding have employed animal models that, as they age, eventually will generate Aβ lesions in the absence of seeding. In the present study, we first established that a transgenic rat model expressing human APP (APP21 line) does not manifest endogenous deposits of Aβ within the course of its median lifespan (30 months). Next, we injected 3-month-old APP21 rats intrahippocampally with dilute Alzheimer brain extracts containing aggregated Aβ. After a 9-month incubation period, these rats had developed senile plaques and CAA in the injected hippocampus, whereas control rats remained free of such lesions. These findings underscore the co-dependence of agent and host in governing seeded protein aggregation, and show that cerebral Aβ-amyloidosis can be induced even in animals that are relatively refractory to the spontaneous origination of parenchymal and vascular deposits of Aβ.


Altered diffusion tensor imaging measurements in aged transgenic Huntington disease rats.

  • Bjørnar T Antonsen‎ et al.
  • Brain structure & function‎
  • 2013‎

Rodent models of Huntington disease (HD) are valuable tools for investigating HD pathophysiology and evaluating new therapeutic approaches. Non-invasive characterization of HD-related phenotype changes is important for monitoring progression of pathological processes and possible effects of interventions. The first transgenic rat model for HD exhibits progressive late-onset affective, cognitive, and motor impairments, as well as neuropathological features reflecting observations from HD patients. In this report, we contribute to the anatomical phenotyping of this model by comparing high-resolution ex vivo DTI measurements obtained in aged transgenic HD rats and wild-type controls. By region of interest analysis supplemented by voxel-based statistics, we find little evidence of atrophy in basal ganglia regions, but demonstrate altered DTI measurements in the dorsal and ventral striatum, globus pallidus, entopeduncular nucleus, substantia nigra, and hippocampus. These changes are largely compatible with DTI findings in preclinical and clinical HD patients. We confirm earlier reports that HD rats express a moderate neuropathological phenotype, and provide evidence of altered DTI measures in specific HD-related brain regions, in the absence of pronounced morphometric changes.


A Novel Model of Intravital Platelet Imaging Using CD41-ZsGreen1 Transgenic Rats.

  • Makoto Mizuno‎ et al.
  • PloS one‎
  • 2016‎

Platelets play pivotal roles in both hemostasis and thrombosis. Although models of intravital platelet imaging are available for thrombosis studies in mice, few are available for rat studies. The present effort aimed to generate fluorescent platelets in rats and assess their dynamics in a rat model of arterial injury. We generated CD41-ZsGreen1 transgenic rats, in which green fluorescence protein ZsGreen1 was expressed specifically in megakaryocytes and thus platelets. The transgenic rats exhibited normal hematological and biochemical values with the exception of body weight and erythroid parameters, which were slightly lower than those of wild-type rats. Platelet aggregation, induced by 20 μM ADP and 10 μg/ml collagen, and blood clotting times were not significantly different between transgenic and wild-type rats. Saphenous arteries of transgenic rats were injured with 10% FeCl3, and the formation of fluorescent thrombi was evaluated using confocal microscopy. FeCl3 caused time-dependent increases in the mean fluorescence intensity of injured arteries of vehicle-treated rats. Prasugrel (3 mg/kg, p.o.), administered 2 h before FeCl3, significantly inhibited fluorescence compared with vehicle-treated rats (4.5 ± 0.4 vs. 14.9 ± 2.4 arbitrary fluorescence units at 30 min, respectively, n = 8, P = 0.0037). These data indicate that CD41-ZsGreen1 transgenic rats represent a useful model for intravital imaging of platelet-mediated thrombus formation and the evaluation of antithrombotic agents.


The development of hypocretin (orexin) deficiency in hypocretin/ataxin-3 transgenic rats.

  • S Zhang‎ et al.
  • Neuroscience‎
  • 2007‎

Narcolepsy is linked to a widespread loss of neurons containing the neuropeptide hypocretin (HCRT), also named orexin. A transgenic (TG) rat model has been developed to mimic the neuronal loss found in narcoleptic humans. In these rats, HCRT neurons gradually die as a result of the expression of a poly-glutamine repeat under the control of the HCRT promoter. To better characterize the changes in HCRT-1 levels in response to the gradual HCRT neuronal loss cerebrospinal fluid (CSF) HCRT-1 levels were measured in various age groups (2-82 weeks) of wild-type (WT) and TG Sprague-Dawley rats. TG rats showed a sharp decline in CSF HCRT-1 level at week 4 with levels remaining consistently low (26%+/-9%, mean+/-S.D.) thereafter compared with WT rats. In TG rats, HCRT-1 levels were dramatically lower in target regions such as the cortex and brainstem (100-fold), indicating decreased HCRT-1 levels at terminals. In TG rats, CSF HCRT-1 levels significantly increased in response to 6 h of prolonged waking, indicating that the remaining HCRT neurons can be stimulated to release more neuropeptide. Rapid eye movement (REM) sleep in TG rats (n=5) was consistent with a HCRT deficiency. In TG rats HCRT immunoreactive (HCRT-ir) neurons were present in the lateral hypothalamus (LH), even in old rats (24 months) but some HCRT-ir somata were in various stages of disintegration. The low output of these neurons is consistent with a widespread dysfunction of these neurons, and establishes this model as a tool to investigate the consequences of partial hypocretin deficiency.


Bone turnover is altered in transgenic rats overexpressing the P2Y2 purinergic receptor.

  • Maria Ellegaard‎ et al.
  • Purinergic signalling‎
  • 2017‎

It is now widely recognized that purinergic signaling plays an important role in the regulation of bone remodeling. One receptor subtype, which has been suggested to be involved in this regulation, is the P2Y2 receptor (P2Y2R). In the present study, we investigated the effect of P2Y2R overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both mineral apposition rate and thickness of the endocortical osteoid layer were higher in the P2Y2R-Tg rats. μCT analysis showed reduced trabecular thickness and structural model index in P2Y2R-Tg rats. Femoral length was increased in the P2Y2R-Tg rats compared to Wt rats. In vitro, there was an increased formation of osteoclasts, but no change in total resorption in cultures from P2Y2R-Tg rats. The formation of mineralized nodules was significantly reduced in the osteoblastic cultures from P2Y2R-Tg rats. In conclusion, our study suggests that P2Y2R is involved in regulation of bone turnover, due to the effects on both osteoblasts and osteoclasts and that these effects might be relevant in the regulation of bone growth.


Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y.

  • A Vezzani‎ et al.
  • Neuroscience‎
  • 2002‎

Functional studies in epileptic tissue indicate that neuropeptide Y and some of its peptide analogs potently inhibit seizure activity. We investigated seizure susceptibility in transgenic rats overexpressing the rat neuropeptide Y gene under the control of its natural promoter. Seizures were induced in adult transgenic male rats and their wild-type littermates by i.c.v. injection of 0.3 microg kainic acid or by electrical kindling of the dorsal hippocampus. Transgenic rats showed a significant reduction in the number and duration of electroencephalographic seizures induced by kainate by 30% and 55% respectively (P<0.05 and 0.01). Transgenic rats were also less susceptible to epileptogenesis than wild-type littermates as demonstrated by a 65% increase in the number of electrical stimuli required to induce stage 5 seizures (P<0.01). This phenotype was associated with a strong and specific expression of neuropeptide Y mRNA in area CA1, a brain area involved in the seizure network. We conclude that endogenous neuropeptide Y overexpression in the rat hippocampus is associated with inhibition of seizures and epileptogenesis suggesting that this system may be a valuable target for developing novel antiepileptic treatments.


Targeted expression of step-function opsins in transgenic rats for optogenetic studies.

  • Hiroyuki Igarashi‎ et al.
  • Scientific reports‎
  • 2018‎

Rats are excellent animal models for experimental neuroscience. However, the application of optogenetics in rats has been hindered because of the limited number of established transgenic rat strains. To accomplish cell-type specific targeting of an optimized optogenetic molecular tool, we generated ROSA26/CAG-floxed STOP-ChRFR(C167A)-Venus BAC rats that conditionally express the step-function mutant channelrhodopsin ChRFR(C167A) under the control of extrinsic Cre recombinase. In primary cultured cortical neurons derived from this reporter rat, only Cre-positive cells expressing ChRFR(C167A) became bi-stable, that is, their excitability was enhanced by blue light and returned to the baseline by yellow~red light. In bigenic pups carrying the Phox2B-Cre driver, ChRFR(C167A) was specifically expressed in the rostral parafacial respiratory group (pFRG) in the medulla, where endogenous Phox2b immunoreactivity was detected. These neurons were sensitive to blue light with an increase in the firing frequency. Thus, this transgenic rat actuator/reporter system should facilitate optogenetic studies involving the effective in vivo manipulation of the activities of specific cell fractions using light of minimal intensity.


Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction.

  • Makoto Asahina‎ et al.
  • Experimental animals‎
  • 2015‎

Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: