Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Activation of the Fas/Fas ligand pathway in hypertensive renal disease in Dahl/Rapp rats.

  • Paul W Sanders‎ et al.
  • BMC nephrology‎
  • 2002‎

Hypertensive nephrosclerosis is the second most common cause of end-stage renal failure in the United States. The mechanism by which hypertension produces renal failure is incompletely understood. Recent evidence demonstrated that an unscheduled and inappropriate increase in apoptosis occurred in the Dahl/Rapp rat, an inbred strain of rat that uniformly develops hypertension and hypertensive nephrosclerosis; early correction of the hypertension prevents the renal injury. The present study examined the role of the Fas/FasL pathway in this process.


Effect of chronic bradykinin B2 receptor blockade on blood pressure of conscious Dahl salt-resistant rats.

  • H Mukai‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. In this study 3 protocols were utilized to determine the role of endogenous kinins in the resistance of the inbred Dahl (Rapp) salt-resistant (SR/Jr) rats to high salt diet-induced blood pressure elevation. 2. The bradykinin B2 receptor antagonist, Hoe 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin) at doses of either 10-20 or 20-40 nmol day(-1) (subcutaneously (s.c), via osmotic minipumps, for either 1 or 3 weeks during a high (8%) salt diet) effectively blocked or attenuated the hypotensive responses to 100-1000 ng of bradykinin. 3. In the first protocol, 5 week old SR/Jr rats treated with Hoe 140 (10-20 nmol day(-1), n = 9, s.c., via osmotic minipumps) for 3 weeks and concomitantly fed high (8%) NaCl diet had significantly higher conscious tail cuff blood pressures (BPc) at 1 and 3 weeks when compared with rats treated with vehicle (0.9% NaCl, n = 6). The differences in BPc between the 2 groups were 13 mmHg (P < 0.001) after 1 week and 8 mmHg (P < 0.05) after 3 weeks of treatment. 4. In the second protocol, 5 week old SR/Jr rats were treated with Hoe 140 (20-40 nmol day(-1), n = 8, s.c., via osmotic minipumps) or vehicle (n = 8) for 3 weeks. During the first week of treatment the rats were fed normal (0.8%) NaCl diet. The rats were then switched to 8% NaCl for 2 remaining weeks of the protocol. The mean BPc of Hoe 140-treated rats was not significantly different from that of the vehicle-treated rats when fed 0.8% NaCl diet. In contrast, rats treated with Hoe 140 and concomitantly fed high (8%) NaCl diet had significantly increased BPc (123+/-2 vs 111 +/- 1 mmHg, P < 0.001 for the Hoe 140- and vehicle-treated rats, respectively). 5. In the third protocol, treatment with Hoe 140 (20 40 nmol day(-1), s.c., via osmotic minipumps) during high salt diet did not increase BPc in rats that were pre-exposed to the high salt diet for 2 weeks. 6. At the end of 3 weeks of study, blood pressure was measured via an arterial catheter during pentobarbitone-induced anaesthesia. Rats treated with Hoe 140 for 1 or 3 weeks had significantly lower mean arterial blood pressures than the vehicle-treated rats. 7. Our findings suggest that in SR/Jr rats, kinin activation of bradykinin B2 receptors at least partially contributes to early regulatory mechanisms that resist an increase in blood pressure following exposure to a high salt diet. The mechanism underlying the decreased blood pressure during pentobarbitone anaesthesia of SR/Jr rats chronically treated with Hoe 140 has yet to be elucidated.


Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats.

  • Judith Homberg‎ et al.
  • BMC genetics‎
  • 2010‎

Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4) has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT)-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis.


Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1.

  • Zachary L Newman‎ et al.
  • PLoS pathogens‎
  • 2010‎

Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LT-sensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1.


Molecular mechanisms of experimental salt-sensitive hypertension.

  • Bina Joe‎ et al.
  • Journal of the American Heart Association‎
  • 2012‎

No abstract available


Mitochondrial polymorphisms in rat genetic models of hypertension.

  • Sivarajan Kumarasamy‎ et al.
  • Mammalian genome : official journal of the International Mammalian Genome Society‎
  • 2010‎

Hypertension is a complex trait that has been studied extensively for genetic contributions of the nuclear genome. We examined mitochondrial genomes of the hypertensive strains: the Dahl Salt-Sensitive (S) rat, the Spontaneously Hypertensive Rat (SHR), and the Albino Surgery (AS) rat, and the relatively normotensive strains: the Dahl Salt-Resistant (R) rat, the Milan Normotensive Strain (MNS), and the Lewis rat (LEW). These strains were used previously for linkage analysis for blood pressure (BP) in our laboratory. The results provide evidence to suggest that variations in the mitochondrial genome do not account for observed differences in blood pressure between the S and R rats. However, variants were detected among the mitochondrial genomes of the various hypertensive strains, S, SHR, and AS, and also among the normotensive strains R, MNS, and LEW. A total of 115, 114, 106, 106, and 16 variations in mtDNA were observed between the comparisons S versus LEW, S versus MNS, S versus SHR, S versus AS, and SHR versus AS, respectively. Among the 13 genes coding for proteins of the electron transport chain, 8 genes had nonsynonymous variations between S, LEW, MNS, SHR, and AS. The lack of any sequence variants between the mitochondrial genomes of S and R rats provides conclusive evidence that divergence in blood pressure between these two inbred strains is exclusively programmed through their nuclear genomes. The variations detected among the various hypertensive strains provides the basis to construct conplastic strains and further evaluate the effects of these variants on hypertension and associated phenotypes.


Genetic Background Specific Hypoxia Resistance in Rat is Correlated with Balanced Activation of a Cross-Chromosomal Genetic Network Centering on Physiological Homeostasis.

  • Lei Mao‎
  • Frontiers in genetics‎
  • 2012‎

Genetic background of an individual can drastically influence an organism's response upon environmental stress and pathological stimulus. Previous studies in inbred rats showed that compared to Brown Norway (BN), Dahl salt-sensitive (SS) rat exerts strong hypoxia susceptibility. However, despite extensive narrow-down approaches via the chromosome substitution methodology, this genome-based physiological predisposition could not be traced back to distinct quantitative trait loci. Upon the completion and public data availability of PhysGen SS-BN consomic (CS) rat platform, I employed systems biology approach attempting to further our understanding of the molecular basis of genetic background effect in light of hypoxia response. I analyzed the physiological screening data of 22 CS rat strains under normoxia and 2-weeks of hypoxia, and cross-compared them to the parental strains. The analyses showed that SS-9(BN) and SS-18(BN) represent the most hypoxia-resistant CS strains with phenotype similar to BN, whereas SS-6(BN) and SS-Y(BN) segregated to the direction of SS. A meta-analysis on the transcriptomic profiles of these CS rat strains under hypoxia treatment showed that although polymorphisms on the substituted BN chromosomes could be directly involved in hypoxia resistance, this seems to be embedded in a more complex trans-chromosomal genetic regulatory network. Via information theory based modeling approach, this hypoxia relevant core genetic network was reverse engineered. Network analyses showed that the protective effects of BN chromosome 9 and 18 were reflected by a balanced activation of this core network centering on physiological homeostasis. Presumably, it is the system robustness constituted on such differential network activation that acts as hypoxia response modifier. Understanding of the intrinsic link between the individual genetic background and the network robustness will set a basis in the current scientific efforts toward personalized medicine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: