Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 539 papers

Divergent innervation of the olfactory bulb by distinct raphe nuclei.

  • Raphael Steinfeld‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

The raphe nuclei provide serotonergic innervation widely in the brain, thought to mediate a variety of neuromodulatory effects. The mammalian olfactory bulb (OB) is a prominent recipient of serotonergic fibers, particularly in the glomerular layer (GL), where they are thought to gate incoming signals from the olfactory nerve. The dorsal raphe nucleus (DRN) and the median raphe nucleus (MRN) are known to densely innervate the OB. The majority of such projections are thought to terminate in the GL, but this has not been explicitly tested. We sought to investigate this using recombinant adeno-associated viruses (rAAV)-mediated expression of green fluorescent protein (GFP)-synaptophysin targeted specifically to neurons of the DRN or the MRN. With DRN injections, labeled fibers were found mostly in the granule cell layer (GCL), not the GL. Conversely, dense labeling in the GL was observed with MRN injections, suggesting that the source of GL innervation is the MRN, not the DRN, as previously thought. The two raphe nuclei thus give dual innervation within the OB, with distinct innervation patterns.


Functional connectivity of the dorsal and median raphe nuclei at rest.

  • Vincent Beliveau‎ et al.
  • NeuroImage‎
  • 2015‎

Serotonin (5-HT) is a neurotransmitter critically involved in a broad range of brain functions and implicated in the pathophysiology of neuropsychiatric illnesses including major depression, anxiety and sleep disorders. Despite being widely distributed throughout the brain, there is limited knowledge on the contribution of 5-HT to intrinsic brain activity. The dorsal raphe (DR) and median raphe (MR) nuclei are the source of most serotonergic neurons projecting throughout the brain and thus provide a compelling target for a seed-based probe of resting-state activity related to 5-HT. Here we implemented a novel multimodal neuroimaging approach for investigating resting-state functional connectivity (FC) between DR and MR and cortical, subcortical and cerebellar target areas. Using [(11)C]DASB positron emission tomography (PET) images of the brain serotonin transporter (5-HTT) combined with structural MRI from 49 healthy volunteers, we delineated DR and MR and performed a seed-based resting-state FC analysis. The DR and MR seeds produced largely similar FC maps: significant positive FC with brain regions involved in cognitive and emotion processing including anterior cingulate, amygdala, insula, hippocampus, thalamus, basal ganglia and cerebellum. Significant negative FC was observed within pre- and postcentral gyri for the DR but not for the MR seed. We observed a significant association between DR and MR FC and regional 5-HTT binding. Our results provide evidence for a resting-state network related to DR and MR and comprising regions receiving serotonergic innervation and centrally involved in 5-HT related behaviors including emotion, cognition and reward processing. These findings provide a novel advance in estimating resting-state FC related to 5-HT signaling, which can benefit our understanding of its role in behavior and neuropsychiatric illnesses.


Transient Adenosine Modulates Serotonin Release Indirectly in the Dorsal Raphe Nuclei.

  • Kailash Shrestha‎ et al.
  • ACS chemical neuroscience‎
  • 2024‎

Rapid adenosine transiently regulates dopamine and glutamate via A1 receptors, but other neurotransmitters, such as serotonin, have not been studied. In this study, we examined the rapid modulatory effect of adenosine on serotonin release in the dorsal raphe nuclei (DRN) of mouse brain slices by using fast-scan cyclic voltammetry. To mimic adenosine release during damage, a rapid microinjection of adenosine at 50 pmol was applied before electrical stimulation of serotonin release. Transient adenosine significantly reduced electrically evoked serotonin release in the first 20 s after application, but serotonin release recovered to baseline as adenosine was cleared from the slice. The continuous perfusion of adenosine did not change the evoked serotonin release. Surprisingly, the modulatory effects of adenosine were not regulated by A1 receptors as adenosine still inhibited serotonin release in A1KO mice and also after perfusion of an A1 antagonist (8-cyclopentyl-1,3-dipropyl xanthine). The inhibition was also not regulated by A3 receptors as perfusion of the A3 antagonist (MRS 1220) in A1KO brain slices did not eliminate the inhibitory effects of transient adenosine. In addition, adenosine also inhibited serotonin release in A2AKO mice, showing that A2A did not modulate serotonin. However, perfusion of a selective 5HT1A autoreceptor antagonist drug [(S)-WAY 100135 dihydrochloride] abolished the inhibitory effect of transient adenosine on serotonin release. Thus, the transient neuromodulatory effect of adenosine on DRN serotonin release is regulated by serotonin autoreceptors and not by adenosine receptors. Rapid, transient adenosine modulation of neurotransmitters such as serotonin may have important implications for diseases such as depression and brain injury.


Functional Connectivity of the Raphe Nuclei: Link to Tobacco Withdrawal in Smokers.

  • Paul Faulkner‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2018‎

Although nicotine alters serotonergic neurochemistry, clinical trials of serotonergic medications for smoking cessation have provided mixed results. Understanding the role of serotonergic dysfunction in tobacco use disorder may advance development of novel pharmacotherapies.


Serotonergic projections to the ventral respiratory column from raphe nuclei in rats.

  • Ryosuke Morinaga‎ et al.
  • Neuroscience research‎
  • 2019‎

The ventral respiratory column (VRC) generates rhythmical respiration and is divided into four compartments: the Bötzinger complex (BC), pre-Bötzinger complex (PBC), rostral ventral respiratory group (rVRG), and caudal ventral respiratory group (cVRG). Serotonergic nerve fibers are densely distributed in the rostral to caudal VRC and serotonin would be one of the important modulators for the respiratory control in the VRC. In the present study, to elucidate detailed distribution of serotonergic neurons in raphe nuclei projecting to the various rostrocaudal levels of VRC, we performed combination of retrograde tracing technique by cholera toxin B subunit (CTB) with immunohistochemistry for tryptophan hydroxylase 2 (TPH2). The double-immunoreactive neurons with CTB and TPH2 were distributed in the both rostral and caudal raphe nuclei, i.e. dorsal raphe nucleus, raphe magnus nucleus, gigantocellular reticular nucleus alpha and ventral parts, lateral paragigantocellular nucleus, parapyramidal area, raphe obscurus nucleus, and raphe pallidus nucleus. The distributions of double-immunoreactive neurons were similar among injection groups of BC, PBC, anterior rVRG, and posterior rVRG/cVRG. In conclusion, serotonergic neurons in both rostral and caudal raphe nuclei projected throughout the VRC and these serotonergic projections may contribute to respiratory responses to various environmental and vital changes.


Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat.

  • Anders Hay-Schmidt‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2003‎

The presence of serotonergic afferents in the hypothalamic suprachiasmatic nucleus (SCN) is well documented and several functional roles of serotonin (5-HT) in circadian function are well established. However, there is some controversy about the precise location of the serotonergic neurones from where this input arises. Discrete injection of the tracer Cholera toxin, subunit B, (ChB) was centred in the rat SCN, and a few retrograde labelled neurones were distributed in the dorsal and median raphe nuclei (MnR) and in the rostral part of the raphe magnus (RMg), but no neurones were found in the raphe pallidus or raphe obscurus. In addition, a group of neurones was consistently found in the medial part of the pontine supra lemniscal nucleus but not including the serotonergic B(9) region. A combination of retrograde tracing with Fluoro-Gold together with 5-HT-immunolabelling, showed few double-labelled neurones in the dorsal, MnR and B(9). However, the majority of projecting neurones were not co-storing 5-HT immunoreactivity. Phaseolus vulgaris-leucoagglutinin (PHA-L) injections in the dorsal raphe resulted in faint labelling, whereas the MnR gave rise to several labelled fibres in the SCN. Individual delicate PHA-L nerve fibres were found in all compartments of the SCN both in terms of rostrocaudal, ventromedial and dorsomedial extent, without any sign of a topographical organisation of the MnR input to the SCN. PHA-L injections into RMg gave rise to labelling of a few processes within the SCN. In conclusion, the main serotonergic input to the rat SCN originates from a few neurones in the MnR.


Anterograde tracing of projections from the dorsal raphe nucleus to the vestibular nuclei.

  • A L Halberstadt‎ et al.
  • Neuroscience‎
  • 2006‎

This study used the anterograde transport of biotinylated dextran amine (BDA) to identify the course and terminal distribution of projections from the dorsal raphe nucleus (DRN) to the vestibular nuclei in rats. After iontophoretic injection of BDA into the medial and lateral regions of DRN, anterogradely labeled fibers descend within the medial longitudinal fasciculus and the ventricular fiber plexus to terminate within two discrete regions of the vestibular nuclear complex. One terminal field was located primarily ipsilateral to the injection site and involved rostrodorsal aspects of the vestibular nuclei, including superior vestibular nucleus and rostral portions of the medial vestibular nucleus (MVN) and lateral vestibular nucleus (LVN). The other terminal field involved caudoventral aspects of both ipsilateral and contralateral MVN and LVN and was less heavily innervated. These findings confirm that the vestibular nuclei are targeted by a regionally-selective projection from the DRN. The segregation of DRN terminals into anatomically distinct fields indicates that the DRN-vestibular nucleus projections are organized to selectively modulate processing within specific functional domains of the vestibular nuclear complex. In particular, these terminal fields may be organized to modulate vestibular regions involved in eye movement-related velocity storage, coordination of vestibular and affective responses, and the bilateral coordination of horizontal eye movement reflexes.


Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex.

  • R M Bowker‎ et al.
  • Brain research‎
  • 1983‎

The localization of serotonergic, various peptidergic and possibly cholinergic neurons in the medullary raphe nuclei that project to the lumbosacral spinal cord have been studied using a retrograde transport method combined with immunocytochemical and histochemical techniques. Spinally projecting neurons stained for serotonin-like, substance P-like, enkephalin-like and thyrotropin-releasing hormone-like immunoreactivity and for the histochemical marker acetylcholinesterase were all observed in each of the raphe nuclei of the medulla, as well as in the adjacent ventrolateral reticular formation. The similar distributions of the descending serotonergic and peptidergic neurons in the raphe nuclei as well as quantitative data on their relative numbers suggest that a large fraction of raphe-spinal neurons contain serotonin co-existing with one or more peptides in the same cell.


TPH2 in the Dorsal Raphe Nuclei Regulates Energy Balance in a Sex-Dependent Manner.

  • Hailan Liu‎ et al.
  • Endocrinology‎
  • 2021‎

AbstractCentral 5-hydroxytryptamine (5-HT), which is primarily synthesized by tryptophan hydroxylase 2 (TPH2) in the dorsal Raphe nuclei (DRN), plays a pivotal role in the regulation of food intake and body weight. However, the physiological functions of TPH2 on energy balance have not been consistently demonstrated. Here we systematically investigated the effects of TPH2 on energy homeostasis in adult male and female mice. We found that the DRN harbors a similar amount of TPH2+ cells in control male and female mice. Adult-onset TPH2 deletion in the DRN promotes hyperphagia and body weight gain only in male mice, but not in female mice. Ablation of TPH2 reduces hypothalamic pro-opiomelanocortin (POMC) neuronal activity robustly in males, but only to a modest degree in females. Deprivation of estrogen by ovariectomy (OVX) causes comparable food intake and weight gain in female control and DRN-specific TPH2 knockout mice. Nevertheless, disruption of TPH2 blunts the anorexigenic effects of exogenous estradiol (E2) and abolishes E2-induced activation of POMC neurons in OVX female mice, indicating that TPH2 is indispensable for E2 to activate POMC neurons and to suppress appetite. Together, our study revealed that TPH2 in the DRN contributes to energy balance regulation in a sexually dimorphic manner.


Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei.

  • J A Stamp‎ et al.
  • Brain research‎
  • 1995‎

Previous investigations of the distribution of neurons containing both serotonin and GABA in the brainstem raphe nuclei have yielded discrepant results amongst different authors. This study attempted to clarify the distribution as well as the proportions of raphe and other brainstem neurons that contain both neurotransmitters. All the nine serotonergic cell groups known to be present in the brainstem were examined with an indirect immunofluorescence method using antibodies against serotonin and glutamic acid decarboxylase in colchicine-treated rats. Sections were incubated either simultaneously or sequentially for the two immunolabels. Brainstem neurons that were labelled for both markers were generally infrequent. Of all the serotonin cell groups in the brainstem, the nucleus raphe magnus contained the most double-labelled cells (a mean of 3.6% of a total of 625-1155 serotonin-immunoreactive cells counted in this nucleus), followed by the nucleus raphe obscurus (1.5% of a total of 220-550 serotonin-immunoreactive neurons counted). The dorsal, median and pontine raphe nuclei as well as the supralemniscal nucleus (the B9 group) contained very few double-labelled cells, which comprised a mean of 0.1-0.7% of all serotonin-immunoreactive cells in each of these nuclei. No double labelled cells were present in the caudal linear raphe nucleus or the nucleus raphe pallidus, nor in the B4 group. These results suggest that only a very small percentage of serotonergic neurons in the medullary raphe nuclei (raphe magnus and raphe obscurus) also contain GABA, whereas such cells are virtually absent in the midbrain raphe nuclei or in the non-raphe serotonergic cell groups in the brainstem.


GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei.

  • J H van Doorninck‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1999‎

The GATA-3 transcription factor shows a specific and restricted expression pattern in the developing and adult mouse brain. In the present study we investigated the role of GATA-3 in the caudal raphe system, which is known to operate as a modulator of motor activity. We demonstrate that virtually all neurons in the caudal raphe nuclei that express GATA-3 also produce serotonin. Absence of GATA-3, as analyzed in chimeric -/- mice, affects the cytoarchitecture of serotonergic neurons in the caudal raphe nuclei. As a result the chimeras show a serious defect in their locomotor performance on a rotating rod. In sum, we conclude that GATA-3 plays a major role in the development of the serotonergic neurons of the caudal raphe nuclei, and that it is crucial for their role in locomotion.


Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.

  • Vikrant Kapoor‎ et al.
  • Nature neuroscience‎
  • 2016‎

The serotonergic raphe nuclei are involved in regulating brain states over timescales of minutes and hours. We examined more rapid effects of raphe activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels.


Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains.

  • Antonia Alonso‎ et al.
  • Brain structure & function‎
  • 2013‎

The raphe nuclei represent the origin of central serotonergic projections. The literature distinguishes seven nuclei grouped into rostral and caudal clusters relative to the pons. The boundaries of these nuclei have not been defined precisely enough, particularly with regard to developmental units, notably hindbrain rhombomeres. We hold that a developmental point of view considering rhombomeres may explain observed differences in connectivity and function. There are twelve rhombomeres characterized by particular genetic profiles, and each develops between one and four distinct serotonergic populations. We have studied the distribution of the conventional seven raphe nuclei among these twelve units. To this aim, we correlated 5-HT-immunoreacted neurons with rhombomeric boundary landmarks in sagittal mouse brain sections at different developmental stages. Furthermore, we performed a partial genoarchitectonic analysis of the developing raphe nuclei, mapping all known serotonergic differentiation markers, and compared these results, jointly with others found in the literature, with our map of serotonin-containing populations, in order to examine regional variations in correspondence. Examples of regionally selective gene patterns were identified. As a result, we produced a rhombomeric classification of some 45 serotonergic populations, and suggested a corresponding modified terminology. Only a minor rostral part of the dorsal raphe nucleus lies in the midbrain. Some serotonergic neurons were found in rhombomere 4, contrary to the conventional assumption that it lacks such neurons. We expect that our reclassification of raphe nuclei may be useful for causal analysis of their differential molecular specification, as well as for studies of differential connectivity and function.


Quipazine Elicits Swallowing in the Arterially Perfused Rat Preparation: A Role for Medullary Raphe Nuclei?

  • Victor Bergé-Laval‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Pharmacological neuromodulation of swallowing may represent a promising therapeutic option to treat dysphagia. Previous studies suggested a serotonergic control of swallowing, but mechanisms remain poorly understood. Here, we investigated the effects of the serotonergic agonist quipazine on swallowing, using the arterially perfused working heart-brainstem (in situ) preparation in rats. Systemic injection of quipazine produced single swallows with motor patterns and swallow-breathing coordination similar to spontaneous swallows, and increased swallow rate with moderate changes in cardiorespiratory functions. Methysergide, a 5-HT2 receptor antagonist, blocked the excitatory effect of quipazine on swallowing, but had no effect on spontaneous swallow rate. Microinjections of quipazine in the nucleus of the solitary tract were without effect. In contrast, similar injections in caudal medullary raphe nuclei increased swallow rate without changes in cardiorespiratory parameters. Thus, quipazine may exert an excitatory effect on raphe neurons via stimulation of 5-HT2A receptors, leading to increased excitability of the swallowing network. In conclusion, we suggest that pharmacological stimulation of swallowing by quipazine in situ represents a valuable model for experimental studies. This work paves the way for future investigations on brainstem serotonergic modulation, and further identification of neural populations and mechanisms involved in swallowing and/or swallow-breathing interaction.


Resting-state functional connectivity of the raphe nuclei in major depressive Disorder: A Multi-site study.

  • Yajuan Zhang‎ et al.
  • NeuroImage. Clinical‎
  • 2023‎

Accumulating evidence showed that major depressive disorder (MDD) is characterized by a dysfunction of serotonin neurotransmission. Raphe nuclei are the sources of most serotonergic neurons that project throughout the brain. Incorporating measurements of activity within the raphe nuclei into the analysis of connectivity characteristics may contribute to understanding how neurotransmitter synthesized centers are involved in thepathogenesisof MDD. Here, we analyzed the resting-state functional magnetic resonance imaging (RS-fMRI) dataset from 1,148 MDD patients and 1,079 healthy individuals recruited across nine centers. A seed-based analysis with the dorsal raphe and median raphe nuclei was performed to explore the functional connectivity (FC) alterations. Compared to controls, for dorsal raphe, the significantly decreased FC linking with the right precuneus and median cingulate cortex were found; for median raphe, the increased FC linking with right superior cerebellum (lobules V/VI) was found in MDD patients. In further exploratory analyzes, MDD-related connectivity alterations in dorsal and median raphe nuclei in different clinical factors remained highly similar to the main findings, indicating these abnormal connectivities are a disease-related alteration. Our study highlights a functional dysconnection pattern of raphe nuclei in MDD with multi-site big data. These findings help improve our understanding of the pathophysiology of depression and provide evidence of the theoretical foundation for the development of novel pharmacotherapies.


Projections from the vestibular nuclei and nucleus prepositus hypoglossi to dorsal raphe nucleus in rats.

  • Bruna Cuccurazzu‎ et al.
  • Neuroscience letters‎
  • 2008‎

The serotonergic system regulates processing in components of the vestibular nuclear complex, including the medial vestibular nucleus (MVe) and nucleus prepositus hypoglossi (PH). Recent studies using anterograde and retrograde tracers have shown that vestibular nuclei are targeted by regionally selective projections from the serotonergic dorsal raphe nucleus. The objective of the present investigation was to determine whether the DRN is targeted by projections from the vestibular nuclear complex in rats, using the anterograde tracer biotinylated dextran amine (BDA). After injection of BDA into PH or the caudal parvicellular division of MVe, labeled fibers and terminals were observed in the ventromedial and lateral subdivisions of DRN. These findings indicate that projections from the vestibular nuclei and PH are organized to modulate processing within specific functional domains of the DRN.


Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression - An Optogenetic Study.

  • Diána Balázsfi‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2018‎

Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex.


Sex and regional differences in decrease of serotonin-immunoreactive cells by parachlorophenylalanine in rat raphe nuclei.

  • Hiroyuki Ito‎ et al.
  • Neuroscience research‎
  • 2010‎

To determine sex and regional differences in the properties of serotonin (5-HT) neurons of the raphe nuclei, the responsiveness to parachlorophenylalanine (PCPA) of 5-HT neurons in the dorsal and median raphe nuclei (DR and MR) and the nucleus raphe magnus (RMg) was analyzed by counting 5-HT-immunoreactive (5-HT-ir) cells. Gonadectomized male (OCX) and female (OVX) rats were treated with 100mg/kg b.wt PCPA or saline daily for 4 days. The brains were removed and fixed one day after the last injection. Frozen sections were stained with serotonin antibody and the numbers of 5-HT-ir cells in the raphe nuclei were counted. As a result, in female rats, the densities of 5-HT-ir cells in these 3 raphe nuclei were almost the same when compared the PCPA-treated and saline-treated groups. On the other hand, in male rats, the densities of 5-HT-ir cells in the DR and MR of PCPA-treated rats were lower than in saline-treated rats. In the male RMg, no difference was seen. These results suggest that responsiveness of 5-HT neurons to PCPA in the DR and MR, but not in the RMg, were sexually dimorphic.


Effects of colostrum serum on the serotonergic system in the dorsal raphe nuclei of exercised rats.

  • Tae-Woon Kim‎ et al.
  • Journal of exercise nutrition & biochemistry‎
  • 2017‎

The central fatigue hypothesis suggests that exhaustion, or the maximum level of exercise, induces excessive stress and increases serotonin concentrations in the brain, which in turn decreases central nervous system (CNS) function and induces fatigue. Our aim was to determine the effects of colostrum serum on the serotonergic system in the dorsal raphe nuclei during exhaustive exercise.


Functional consequences of acute tryptophan depletion on raphe nuclei connectivity and network organization in healthy women.

  • Karl-Jürgen Bär‎ et al.
  • NeuroImage‎
  • 2020‎

Previous research on central nervous serotonin (5-HT) function provided evidence for a substantial involvement of 5-HT in the regulation of brain circuitries associated with cognitive and affective processing. The underlying neural networks comprise core subcortical/cortical regions such as amygdala and medial prefrontal cortex, which are assumed to be modulated amongst others by 5-HT. Beside the use of antidepressants, acute tryptophan depletion (ATD) is a widely accepted technique to manipulate of 5-HT synthesis and its respective metabolites in humans by means of a dietary and non-pharmacological tool. We used a double-blind, randomized, cross-over design with two experimental challenge conditions, i.e. ATD and tryptophan (TRP) supplementation (TRYP+) serving as a control. The aim was to perturb 5-HT synthesis and to detect its impact on brain functional connectivity (FC) of the upper serotonergic raphe nuclei, the amygdala and the ventromedial prefrontal cortex as well as on network organization using resting state fMRI. 30 healthy adult female participants (age: M ​= ​24.5 ​± ​4.4 ​yrs) were included in the final analysis. ATD resulted in a 90% decrease of TRP in the serum relative to baseline. Compared to TRYP ​+ ​for the ATD condition a significantly lower FC of the raphe nucleus to the frontopolar cortex was detected, as well as greater functional coupling between the right amygdala and the ventromedial prefrontal cortex. FC of the raphe nucleus correlated significantly with the magnitude of TRP changes for both challenge conditions (ATD & TRYP+). Network-based statistical analysis using time series from 260 independent anatomical ROIs revealed significantly greater FC after ATD compared to TRYP+ in several brain regions being part of the default-mode (DMN) and the executive-control networks (ECN), but also of salience or visual networks. Finally, we observed an impact of ATD on the rich-club organization in terms of decreased rich-club coefficients compared to TRYP+. In summary we could confirm previous findings that the putative decrease in brain 5-HT synthesis via ATD significantly alters FC of the raphe nuclei as well as of specific subcortical/cortical regions involved in affective, but also in cognitive processes. Moreover, an ATD-effect on the so-called rich-club organization of some nodes with the high degree was demonstrated. This may indicate effects of brain 5-HT on the integration of information flow from several brain networks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: