Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 171 papers

Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs.

  • Shawn M Lyons‎ et al.
  • Nature communications‎
  • 2017‎

RNA G-quadruplex (RG4) structures are involved in multiple biological processes. Recent genome-wide analyses of human mRNA transcriptome identified thousands of putative intramolecular RG4s that readily assemble in vitro but shown to be unfolded in vivo. Previously, we have shown that mature cytoplasmic tRNAs are cleaved during stress response to produce tRNA fragments that function to repress translation in vivo. Here we report that these bioactive tRNA fragments assemble into intermolecular RG4s. We provide evidence for the formation of uniquely stable tetramolecular RG4 structures consisting of five tetrad layers formed by 5'-terminal oligoguanine motifs of an individual tRNA fragment. RG4 is required for functions of tRNA fragments in the regulation of mRNA translation, a critical component of cellular stress response. RG4 disruption abrogates tRNA fragments ability to trigger the formation of Stress Granules in vivo. Collectively, our data rationalize the existence of naturally occurring RG4-assembling tRNA fragments and emphasize their regulatory roles.


Peroxiredoxin Asp f3 Is Essential for Aspergillus fumigatus To Overcome Iron Limitation during Infection.

  • Victor Brantl‎ et al.
  • mBio‎
  • 2021‎

Aspergillus fumigatus is an important fungal pathogen that causes allergic reactions but also life-threatening infections. One of the most abundant A. fumigatus proteins is Asp f3. This peroxiredoxin is a major fungal allergen and known for its role as a virulence factor, vaccine candidate, and scavenger of reactive oxygen species. Based on the hypothesis that Asp f3 protects A. fumigatus against killing by immune cells, we investigated the susceptibility of a conditional aspf3 mutant by employing a novel assay. Surprisingly, Asp f3-depleted hyphae were killed as efficiently as the wild type by human granulocytes. However, we identified an unexpected growth defect of mutants that lack Asp f3 under low-iron conditions, which explains the avirulence of the Δaspf3 deletion mutant in a murine infection model. A. fumigatus encodes two Asp f3 homologues which we named Af3l (Asp f3-like) 1 and Af3l2. Inactivation of Af3l1, but not of Af3l2, exacerbated the growth defect of the conditional aspf3 mutant under iron limitation, which ultimately led to death of the double mutant. Inactivation of the iron acquisition repressor SreA partially compensated for loss of Asp f3 and Af3l1. However, Asp f3 was not required for maintaining iron homeostasis or siderophore biosynthesis. Instead, we show that it compensates for a loss of iron-dependent antioxidant enzymes. Iron supplementation restored the virulence of the Δaspf3 deletion mutant in a murine infection model. Our results unveil the crucial importance of Asp f3 to overcome nutritional immunity and reveal a new biological role of peroxiredoxins in adaptation to iron limitation. IMPORTANCE Asp f3 is one of the most abundant proteins in the pathogenic mold Aspergillus fumigatus. It has an enigmatic multifaceted role as a fungal allergen, virulence factor, reactive oxygen species (ROS) scavenger, and vaccine candidate. Our study provides new insights into the cellular role of this conserved peroxiredoxin. We show that the avirulence of a Δaspf3 mutant in a murine infection model is linked to a low-iron growth defect of this mutant, which we describe for the first time. Our analyses indicated that Asp f3 is not required for maintaining iron homeostasis. Instead, we found that Asp f3 compensates for a loss of iron-dependent antioxidant enzymes. Furthermore, we identified an Asp f3-like protein which is partially functionally redundant with Asp f3. We highlight an unexpected key role of Asp f3 and its partially redundant homologue Af3l1 in overcoming the host's nutritional immunity. In addition, we uncovered a new biological role of peroxiredoxins.


SNX27-Retromer directly binds ESCPE-1 to transfer cargo proteins during endosomal recycling.

  • Boris Simonetti‎ et al.
  • PLoS biology‎
  • 2022‎

Coat complexes coordinate cargo recognition through cargo adaptors with biogenesis of transport carriers during integral membrane protein trafficking. Here, we combine biochemical, structural, and cellular analyses to establish the mechanistic basis through which SNX27-Retromer, a major endosomal cargo adaptor, couples to the membrane remodeling endosomal SNX-BAR sorting complex for promoting exit 1 (ESCPE-1). In showing that the SNX27 FERM (4.1/ezrin/radixin/moesin) domain directly binds acidic-Asp-Leu-Phe (aDLF) motifs in the SNX1/SNX2 subunits of ESCPE-1, we propose a handover model where SNX27-Retromer captured cargo proteins are transferred into ESCPE-1 transport carriers to promote endosome-to-plasma membrane recycling. By revealing that assembly of the SNX27:Retromer:ESCPE-1 coat evolved in a stepwise manner during early metazoan evolution, likely reflecting the increasing complexity of endosome-to-plasma membrane recycling from the ancestral opisthokont to modern animals, we provide further evidence of the functional diversification of yeast pentameric Retromer in the recycling of hundreds of integral membrane proteins in metazoans.


RNA-dependent sterol aspartylation in fungi.

  • Nathaniel Yakobov‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Diverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes. We report here the discovery of ergosteryl-3β-O-l-aspartate (Erg-Asp), a conjugated sterol that is produced by the tRNA-dependent addition of aspartate to the 3β-OH group of ergosterol, the major sterol found in fungal membranes. In fact, Erg-Asp exists in the majority of "higher" fungi, including species of biotechnological interest, and, more importantly, in human pathogens like Aspergillus fumigatus We show that a bifunctional enzyme, ergosteryl-3β-O-l-aspartate synthase (ErdS), is responsible for Erg-Asp synthesis. ErdS corresponds to a unique fusion of an aspartyl-tRNA synthetase-that produces aspartyl-tRNAAsp (Asp-tRNAAsp)-and of a Domain of Unknown Function 2156, which actually transfers aspartate from Asp-tRNAAsp onto ergosterol. We also uncovered that removal of the Asp modifier from Erg-Asp is catalyzed by a second enzyme, ErdH, that is a genuine Erg-Asp hydrolase participating in the turnover of the conjugated sterol in vivo. Phylogenomics highlights that the entire Erg-Asp synthesis/degradation pathway is conserved across "higher" fungi. Given the central roles of sterols and conjugated sterols in fungi, we propose that this tRNA-dependent ergosterol modification and homeostasis system might have broader implications in membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity.


FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences.

  • Raeann Goering‎ et al.
  • eLife‎
  • 2020‎

The sorting of RNA molecules to subcellular locations facilitates the activity of spatially restricted processes. We have analyzed subcellular transcriptomes of FMRP-null mouse neuronal cells to identify transcripts that depend on FMRP for efficient transport to neurites. We found that these transcripts contain an enrichment of G-quadruplex sequences in their 3' UTRs, suggesting that FMRP recognizes them to promote RNA localization. We observed similar results in neurons derived from Fragile X Syndrome patients. We identified the RGG domain of FMRP as important for binding G-quadruplexes and the transport of G-quadruplex-containing transcripts. Finally, we found that the translation and localization targets of FMRP were distinct and that an FMRP mutant that is unable to bind ribosomes still promoted localization of G-quadruplex-containing messages. This suggests that these two regulatory modes of FMRP may be functionally separated. These results provide a framework for the elucidation of similar mechanisms governed by other RNA-binding proteins.


Novel Lipid Long Intervening Noncoding RNA, Oligodendrocyte Maturation-Associated Long Intergenic Noncoding RNA, Regulates the Liver Steatosis Gene Stearoyl-Coenzyme A Desaturase As an Enhancer RNA.

  • Jihane N Benhammou‎ et al.
  • Hepatology communications‎
  • 2019‎

The global obesity epidemic is driving the concomitant rise in nonalcoholic fatty liver disease (NAFLD). To identify new genes involved in central liver functions, we examined liver RNA-sequence data from 259 patients who underwent morbidly obese bariatric surgery. Of these patients, 84 had normal liver histology, 40 simple steatosis, 43 nonalcoholic steatohepatitis, and the remaining 92 patients had varying degrees of NAFLD based on liver histology. We discovered oligodendrocyte maturation-associated long intergenic noncoding RNA (OLMALINC), a long intervening noncoding RNA (lincRNA) in a human liver co-expression network (n = 75 genes) that was strongly associated with statin use and serum triglycerides (TGs). OLMALINC liver expression was highly correlated with the expression of known cholesterol biosynthesis genes and stearoyl-coenzyme A desaturase (SCD). SCD is the rate-limiting enzyme in monounsaturated fatty acids and a key TG gene that is known to be up-regulated in liver steatosis and NAFLD and resides adjacent to OLMALINC on the human chromosome 10q24.31. Next, we functionally demonstrated that OLMALINC regulates SCD as an enhancer-RNA (eRNA), thus describing the first lincRNA that functions as an eRNA to regulate lipid metabolism. Specifically, we show that OLMALINC promotes liver expression of SCD in cis through regional chromosomal DNA-DNA looping interactions. Conclusion: The primate-specific lincRNA OLMALINC is a novel epigenetic regulator of the key TG and NAFLD gene SCD.


Genetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer.

  • Allison M Speers‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of P. aeruginosa and restored the dense mutant biofilms to wild-type levels. Furthermore, PilT3 and PilT4 rescued the twitching motility defect of the PilT-deficient mutant. However, PilT4 was the only paralog whose inactivation in G. sulfurreducens lead to phenotypes associated with the hyperpiliation of non-retractile mutants such as enhanced adhesion and biofilm-forming abilities. In addition, PilT4 was required to reduce iron oxides. Taken together, the results indicate that PilT4 is the motor ATPase of G. sulfurreducens pili and reveal a previously unrecognized role for pilus retraction in extracellular electron transfer, a strategy that confers on Geobacter spp. an adaptive advantage for metal reduction in the natural environment.


Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.

  • Esther N M Nolte-'t Hoen‎ et al.
  • Nucleic acids research‎
  • 2012‎

Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used array analysis to establish the presence of microRNAs and mRNA in cell-derived vesicles from many sources. Here, we used an unbiased approach by deep sequencing of small RNA released by immune cells. We found a large variety of small non-coding RNA species representing pervasive transcripts or RNA cleavage products overlapping with protein coding regions, repeat sequences or structural RNAs. Many of these RNAs were enriched relative to cellular RNA, indicating that cells destine specific RNAs for extracellular release. Among the most abundant small RNAs in shuttle RNA were sequences derived from vault RNA, Y-RNA and specific tRNAs. Many of the highly abundant small non-coding transcripts in shuttle RNA are evolutionary well-conserved and have previously been associated to gene regulatory functions. These findings allude to a wider range of biological effects that could be mediated by shuttle RNA than previously expected. Moreover, the data present leads for unraveling how cells modify the function of other cells via transfer of specific non-coding RNA species.


The mitochondrial RNA granule modulates manganese-dependent cell toxicity.

  • E Werner‎ et al.
  • Molecular biology of the cell‎
  • 2022‎

Prolonged manganese exposure causes manganism, a neurodegenerative movement disorder. The identity of adaptive and nonadaptive cellular processes targeted by manganese remains mostly unexplored. Here we study mechanisms engaged by manganese in genetic cellular models known to increase susceptibility to manganese exposure, the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson's gene PARK2. We found that SLC30A10 and PARK2 mutations as well as manganese exposure compromised the mitochondrial RNA granule composition and function, resulting in disruption of mitochondrial transcript processing. These RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, cells that survived a cytotoxic manganese challenge had impaired RNA granule function, thus suggesting that this granule phenotype was adaptive. CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 or DHX30, as well as pharmacological inhibition of mitochondrial transcription-translation, were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that impairment of the mitochondrial RNA granule function is a protective mechanism for acute manganese toxicity.


The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.

  • Raghuvaran Shanmugam‎ et al.
  • Nucleic acids research‎
  • 2014‎

Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.


tRNA Core Hypothesis for the Transition from the RNA World to the Ribonucleoprotein World.

  • Savio T de Farias‎ et al.
  • Life (Basel, Switzerland)‎
  • 2016‎

Herein we present the tRNA core hypothesis, which emphasizes the central role of tRNAs molecules in the origin and evolution of fundamental biological processes. tRNAs gave origin to the first genes (mRNA) and the peptidyl transferase center (rRNA), proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes then arose in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by three kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.


TOE1 acts as a 3' exonuclease for telomerase RNA and regulates telomere maintenance.

  • Tingting Deng‎ et al.
  • Nucleic acids research‎
  • 2019‎

In human cells, telomeres are elongated by the telomerase complex that contains the reverse transcriptase hTERT and RNA template TERC/hTR. Poly(A)-specific ribonuclease (PARN) is known to trim hTR precursors by removing poly(A) tails. However, the precise mechanism of hTR 3' maturation remains largely unknown. Target of Egr1 (TOE1) is an Asp-Glu-Asp-Asp (DEDD) domain containing deadenylase that is mutated in the human disease Pontocerebella Hypoplasia Type 7 (PCH7) and implicated in snRNA and hTR processing. We have previously found TOE1 to localize specifically in Cajal bodies, where telomerase RNP complex assembly takes place. In this study, we showed that TOE1 could interact with hTR and the telomerase complex. TOE1-deficient cells accumulated hTR precursors, including oligoadenylated and 3'-extended forms, which was accompanied by impaired telomerase activity and shortened telomeres. Telomerase activity in TOE1-deficient cells could be rescued by wild-type TOE1 but not the catalytically inactive mutant. Our results suggest that hTR 3' end processing likely involves multiple exonucleases that work in parallel and/or sequentially, where TOE1 may function non-redundantly as a 3'-to-5' exonuclease in conjunction with PARN. Our study highlights a mechanistic link between TOE1 mutation, improper hTR processing and telomere dysfunction in diseases such as PCH7.


RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids.

  • Nathaniel Yakobov‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3β-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3β-OH group of ergosterol (Erg), yielding ergosteryl-3β-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3β-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3β-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease.

  • Xiaobing Huang‎ et al.
  • Nature communications‎
  • 2023‎

PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that regulate gene expression, yet their molecular functions in neurobiology are unclear. While investigating neurodegeneration mechanisms using human α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg pan-neuronal overexpressing strains, we unexpectedly observed dysregulation of piRNAs. RNAi screening revealed that knock down of piRNA biogenesis genes improved thrashing behavior; further, a tofu-1 gene deletion ameliorated phenotypic deficits in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg transgenic strains. piRNA expression was extensively downregulated and H3K9me3 marks were decreased after tofu-1 deletion in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg strains. Dysregulated piRNAs targeted protein degradation genes suggesting that a decrease of piRNA expression leads to an increase of degradation ability in C. elegans. Finally, we interrogated piRNA expression in brain samples from PD patients. piRNAs were observed to be widely overexpressed at late motor stage. In this work, our results provide evidence that piRNAs are mediators in pathogenesis of Lewy body diseases and suggest a molecular mechanism for neurodegeneration in these and related disorders.


N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages.

  • Shuliang Chen‎ et al.
  • PLoS pathogens‎
  • 2021‎

N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in CD4+ T cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in myeloid cells that are important for antiviral immunity. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in differentiated human monocytic cells and primary monocyte-derived macrophages. Transfection of differentiated monocytic U937 cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered m6A levels of RNA by manipulating the expression of the m6A erasers (FTO and ALKBH5) or pharmacological inhibition of m6A addition in virus-producing cells, or by treating HIV-1 RNA with recombinant FTO in vitro. HIV-1 RNA transfection or viral infection of differentiated U937 cells and primary macrophages demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies indicated that m6A of HIV-1 RNA escaped retinoic acid-induced gene I (RIG-I)-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Together, these findings suggest that m6A modifications of HIV-1 RNA evade innate immune sensing in myeloid cells.


Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing.

  • Irene Papatheodorou‎ et al.
  • PloS one‎
  • 2012‎

A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.


Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells.

  • Kazutoshi Takahashi‎ et al.
  • Cell reports‎
  • 2020‎

Previous studies have suggested that the loss of the translation initiation factor eIF4G1 homolog NAT1 induces excessive self-renewability of naive pluripotent stem cells (PSCs); yet the role of NAT1 in the self-renewal and differentiation of primed PSCs is still unclear. Here, we generate a conditional knockout of NAT1 in primed PSCs and use the cells for the functional analyses of NAT1. Our results show that NAT1 is required for the self-renewal and neural differentiation of primed PSCs. In contrast, NAT1 deficiency in naive pluripotency attenuates the differentiation to all cell types. We also find that NAT1 is involved in efficient protein expression of an RNA uridyltransferase, TUT7. TUT7 is involved in the neural differentiation of primed PSCs via the regulation of human endogenous retrovirus accumulation. These data demonstrate the essential roles of NAT1 and TUT7 in the precise transition of stem cell fate.


Small RNA profiles of HTLV-1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T-cell antigen receptor γ-chain using massively parallel sequencing: A pilot study.

  • Daniela Raguer Valadão de Souza‎ et al.
  • Oncology letters‎
  • 2020‎

In the present pilot study, massively parallel sequencing (MPS) technology was used to investigate cellular small RNA (sRNA) levels in the peripheral blood mononuclear cells (PBMCs) of human T-lymphotropic virus type I (HTLV-I) infected asymptomatic carriers with monoclonal (ASM) and polyclonal (ASP) T cell receptor (TCR) γ gene. Blood samples from 15 HTLV-I asymptomatic carriers (seven ASM and eight ASP) were tested for the clonal TCR-γ gene and submitted for sRNA library construction together with blood samples of five healthy controls (HCs) using Illumina sequencing platform. The sRNA-sequencing reads were aligned, annotated and profiled using various bioinformatics tools. Based on these results, possible markers were validated in the study samples by performing reverse transcription-quantitative (RT-q)PCR analysis. A total of 76 known sRNAs and 52 putative novel sRNAs were identified. Among them, 44 known and 34 potential novel sRNAs were differentially expressed in the ASM and ASP libraries compared with HCs. In addition, 10 known sRNAs were exclusively dysregulated in the ASM group and one (transfer RNA 65) was significantly upregulated in the ASP group. Homo sapiens (hsa) microRNA (miRNA/mir)-23a-3p, -28-5p, hsa-let-7e-5p and hsa-mir-28-3p and -361-5p were the most abundantly upregulated mature miRNAs and hsa-mir-363-3p, -532-5p, -106a-5p, -25-3p and -30e-5p were significantly downregulated miRNAs (P<0.05) with a >2-fold difference between the ASM and ASP groups compared with HCs. Based on these results, hsa-mir-23a-3p and -363-3p were selected for additional validation. However, the quantification of these two miRNAs using RT-qPCR did not provide any significant differences. While the present study failed to identify predictive sRNA markers to distinguish between ASM and ASP, the MPS results revealed differential sRNA expression profiles in the PBMCs of HTLV-1 asymptomatic carriers (ASM and ASP) compared with HCs.


Silencing of one copy of the translation initiation factor eIFiso4G in Japanese plum (Prunus salicina) impacts susceptibility to Plum pox virus (PPV) and small RNA production.

  • Julia Rubio‎ et al.
  • BMC plant biology‎
  • 2019‎

In plants, host factors encoded by susceptibility (S) genes are indispensable for viral infection. Resistance is achieved through the impairment or the absence of those susceptibility factors. Many S genes have been cloned from model and crop species and a majority of them are coding for members of the eukaryotic translation initiation complex, mainly eIF4E, eIF4G and their isoforms. The aim of this study was to investigate the role of those translation initiation factors in susceptibility of stone fruit species to sharka, a viral disease due to Plum pox virus (PPV).


Structure analysis of Entamoeba histolytica DNMT2 (EhMeth).

  • Eike C Schulz‎ et al.
  • PloS one‎
  • 2012‎

In eukaryotes, DNA methylation is an important epigenetic modification that is generally involved in gene regulation. Methyltransferases (MTases) of the DNMT2 family have been shown to have a dual substrate specificity acting on DNA as well as on three specific tRNAs (tRNA(Asp), tRNA(Val), tRNA(Gly)). Entamoeba histolytica is a major human pathogen, and expresses a single DNA MTase (EhMeth) that belongs to the DNMT2 family and shows high homology to the human enzyme as well as to the bacterial DNA MTase M.HhaI. The molecular basis for the recognition of the substrate tRNAs and discrimination of non-cognate tRNAs is unknown. Here we present the crystal structure of the cytosine-5-methyltransferase EhMeth at a resolution of 2.15 Å, in complex with its reaction product S-adenosyl-L-homocysteine, revealing all parts of a DNMT2 MTase, including the active site loop. Mobility shift assays show that in vitro the full length tRNA is required for stable complex formation with EhMeth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: