Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 9,508 papers

18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA.

  • Cory Ann Leonard‎ et al.
  • BioMed research international‎
  • 2016‎

The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects.


Structural and functional analysis of Utp24, an endonuclease for processing 18S ribosomal RNA.

  • Weidong An‎ et al.
  • PloS one‎
  • 2018‎

The precursor ribosomal RNA is processed by multiple steps of nucleolytic cleavage to generate mature rRNAs. Utp24 is a PIN domain endonuclease in the early 90S precursor of small ribosomal subunit and is proposed to cleave at sites A1 and A2 of pre-rRNA. Here we determine the crystal structure of Utp24 from Schizosaccharomyces pombe at 2.1 angstrom resolution. Utp24 structurally resembles the ribosome assembly factor Utp23 and both contain a Zn-finger motif. Functional analysis in Saccharomyces cerevisiae shows that depletion of Utp24 disturbs the assembly of 90S and abolishes cleavage at sites A0, A1 and A2. The 90S assembled with inactivated Utp24 is arrested at a post-A0-cleavage state and contains enriched nuclear exosome for degradation of 5' ETS. Despite of high sequence conservation, Utp24 from other organisms is unable to form an active 90S in S. cerevisiae, suggesting that Utp24 needs to be precisely positioned in 90S. Our study provides biochemical and structural insight into the role of Utp24 in 90S assembly and activity.


Atypical U3 snoRNA Suppresses the Process of Pterygium Through Modulating 18S Ribosomal RNA Synthesis.

  • Xin Zhang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

The progression and recurrence of pterygium mainly occur due to the abnormal proliferation and migration of stromal pterygium fibroblasts. This research explores the aberrant expression of small nucleolar RNA U3 (U3 snoRNA) in pterygium and elucidates the molecular mechanisms of U3 snoRNA in pterygium development.


New Hosts of Simplicimonas similis and Trichomitus batrachorum Identified by 18S Ribosomal RNA Gene Sequences.

  • Kris Genelyn B Dimasuay‎ et al.
  • Journal of parasitology research‎
  • 2013‎

Trichomonads are obligate anaerobes generally found in the digestive and genitourinary tract of domestic animals. In this study, four trichomonad isolates were obtained from carabao, dog, and pig hosts using rectal swab. Genomic DNA was extracted using Chelex method and the 18S rRNA gene was successfully amplified through novel sets of primers and undergone DNA sequencing. Aligned isolate sequences together with retrieved 18S rRNA gene sequences of known trichomonads were utilized to generate phylogenetic trees using maximum likelihood and neighbor-joining analyses. Two isolates from carabao were identified as Simplicimonas similis while each isolate from dog and pig was identified as Pentatrichomonas hominis and Trichomitus batrachorum, respectively. This is the first report of S. similis in carabao and the identification of T. batrachorum in pig using 18S rRNA gene sequence analysis. The generated phylogenetic tree yielded three distinct groups mostly with relatively moderate to high bootstrap support and in agreement with the most recent classification. Pathogenic potential of the trichomonads in these hosts still needs further investigation.


Exonuclease resistant 18S and 25S ribosomal RNA components in yeast are possibly newly transcribed by RNA polymerase II.

  • Jacob Fleischmann‎ et al.
  • BMC molecular and cell biology‎
  • 2020‎

We have previously reported 18S and 25S ribosomal RNA molecules in Candida albicans resistant to processive 5' → 3' exonuclease, appearing as cells approached stationary growth phase. Initial analysis pointed to extra phosphate(s) at their 5'- end raising the possibility that they were newly transcribed. Here we report on additional experiments exploring this possibility and try to establish which of the RNA polymerases may be transcribing them.


Molecular mechanism of human ISG20L2 for the ITS1 cleavage in the processing of 18S precursor ribosomal RNA.

  • Yinliang Ma‎ et al.
  • Nucleic acids research‎
  • 2024‎

The exonuclease ISG20L2 has been initially characterized for its role in the mammalian 5.8S rRNA 3' end maturation, specifically in the cleavage of ITS2 of 12S precursor ribosomal RNA (pre-rRNA). Here, we show that human ISG20L2 is also involved in 18S pre-rRNA maturation through removing the ITS1 region, and contributes to ribosomal biogenesis and cell proliferation. Furthermore, we determined the crystal structure of the ISG20L2 nuclease domain at 2.9 Å resolution. It exhibits the typical αβα fold of the DEDD 3'-5' exonuclease with a catalytic pocket located in the hollow near the center. The catalytic residues Asp183, Glu185, Asp267, His322 and Asp327 constitute the DEDDh motif in ISG20L2. The active pocket represents conformational flexibility in the absence of an RNA substrate. Using structural superposition and mutagenesis assay, we mapped RNA substrate binding residues in ISG20L2. Finally, cellular assays revealed that ISG20L2 is aberrantly up-regulated in colon adenocarcinoma and promotes colon cancer cell proliferation through regulating ribosome biogenesis. Together, these results reveal that ISG20L2 is a new enzymatic member for 18S pre-rRNA maturation, provide insights into the mechanism of ISG20L2 underlying pre-rRNA processing, and suggest that ISG20L2 is a potential therapeutic target for colon adenocarcinoma.


The nuclear 18S ribosomal DNAs of avian haemosporidian parasites.

  • Josef Harl‎ et al.
  • Malaria journal‎
  • 2019‎

Plasmodium species feature only four to eight nuclear ribosomal units on different chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants originate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during different developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species.


Haptophyte Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and Scanning Electron Microscopy.

  • Sandra Gran-Stadniczeñko‎ et al.
  • The Journal of eukaryotic microbiology‎
  • 2017‎

Haptophyta encompasses more than 300 species of mostly marine pico- and nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden haptophyte diversity and vertical distribution by metabarcoding, and to improve the approach to study haptophyte community composition, richness and proportional abundance by comparing two rRNA markers and scanning electron microscopy (SEM). Samples were collected in August 2013 at the Outer Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte-specific primers targeting the V4 region of the 18S, and the D1-D2 region of the 28S rRNA. Taxonomy was assigned using curated haptophyte reference databases and phylogenetic analyses. Both marker genes showed Chrysochromulinaceae and Prymnesiaceae to be the families with highest number of Operational Taxonomic Units (OTUs), as well as proportional abundance. The 18S rRNA data set also contained OTUs assigned to eight supported and defined clades consisting of environmental sequences only, possibly representing novel lineages from family to class. We also recorded new species for the area. Comparing coccolithophores by SEM with metabarcoding shows a good correspondence with the 18S rRNA gene proportional abundances. Our results contribute to link morphological and molecular data and 28S to 18S rRNA gene sequences of haptophytes without cultured representatives, and to improve metabarcoding methodology.


PCR primers for metazoan nuclear 18S and 28S ribosomal DNA sequences.

  • Ryuji J Machida‎ et al.
  • PloS one‎
  • 2012‎

Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity.


Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

  • Franck Martin‎ et al.
  • Nature communications‎
  • 2016‎

Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon.


WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA.

  • Sara Haag‎ et al.
  • RNA (New York, N.Y.)‎
  • 2015‎

Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2'-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams-Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3'-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3' ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3'-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N(7)-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.


PEMA: a flexible Pipeline for Environmental DNA Metabarcoding Analysis of the 16S/18S ribosomal RNA, ITS, and COI marker genes.

  • Haris Zafeiropoulos‎ et al.
  • GigaScience‎
  • 2020‎

Environmental DNA and metabarcoding allow the identification of a mixture of species and launch a new era in bio- and eco-assessment. Many steps are required to obtain taxonomically assigned matrices from raw data. For most of these, a plethora of tools are available; each tool's execution parameters need to be tailored to reflect each experiment's idiosyncrasy. Adding to this complexity, the computation capacity of high-performance computing systems is frequently required for such analyses. To address the difficulties, bioinformatic pipelines need to combine state-of-the art technologies and algorithms with an easy to get-set-use framework, allowing researchers to tune each study. Software containerization technologies ease the sharing and running of software packages across operating systems; thus, they strongly facilitate pipeline development and usage. Likewise programming languages specialized for big data pipelines incorporate features like roll-back checkpoints and on-demand partial pipeline execution.


Taxonomic profiling of individual nematodes isolated from copse soils using deep amplicon sequencing of four distinct regions of the 18S ribosomal RNA gene.

  • Harutaro Kenmotsu‎ et al.
  • PloS one‎
  • 2020‎

Nematodes are representative soil metazoans with diverged species that play crucial roles in nutrient recycling in the pedosphere. Qualitative and quantitative information on nematode communities is useful for assessing soil quality, and DNA barcode-mediated taxonomic analysis is a powerful tool to investigate taxonomic compositions and changes in nematode communities. Here, we investigated four regions (regions 1-4) of the 18S small subunit ribosomal RNA (SSU) gene as PCR targets of deep amplicon sequencing for the taxonomic profiling of individual soil nematodes. We determined the sequence variants (SVs) of 4 SSU regions for 96 nematodes (total 384 amplicons) isolated from copse soils and assigned their taxonomy using the QIIME2 software with dada2 or deblur algorithm and the SILVA database. Dada2 detected approximately 2-fold more nematode-derived SVs than deblur, and a larger number of SVs were obtained in regions 1 and 4 than those in other regions. These results and sufficient reference sequence coverage in region 4 indicated that DNA barcoding using a primer set for region 4 followed by dada2-based analysis would be most suitable for soil nematode taxonomic analysis. Eighteen SSU-derived operational taxonomic units (rOTUs) were obtained from 68 isolates, and their orders were determined based on the phylogenetic trees built by four regional sequences of rOTUs and 116 nematode reference species as well as the BLASTN search. The majority of the isolates were derived from three major orders Dorylaimida (6 rOTUs, 51.5% in 68 isolates), Rhabditida (4 rOTUs, 29.4%), and Triplonchida (7 rOTUs, 17.6%). The predicted feeding types of the isolates were fungivores (38.2% in total nematodes), plant feeders (32.4%), and 14.7% for both bacterivores and omnivores/predators. Additionally, we attempted to improve the branch structure of phylogenetic trees by using long nucleotide sequences artificially prepared by connecting regional sequences, but the effect was limited.


A retrospective observational study of the impact of 16s and 18s ribosomal RNA PCR on antimicrobial treatment over seven years: A tertiary hospital experience.

  • TeeKeat Teoh‎ et al.
  • PloS one‎
  • 2021‎

Although culture-based methods remain a staple element of microbiology analysis, advanced molecular methods increasingly supplement the testing repertoire. Since the advent of 16s and 18s ribosomal RNA PCR in the 2000s, there has been interest in its utility for pathogen detection. Nonetheless, studies assessing the impact on antimicrobial prescribing are limited. We report a single-centre experience of the influence of 16s and 18s PCR testing on antimicrobial treatment, including a cost-analysis.


An RNA conformational switch regulates pre-18S rRNA cleavage.

  • Allison C Lamanna‎ et al.
  • Journal of molecular biology‎
  • 2011‎

To produce mature ribosomal RNAs (rRNAs), polycistronic rRNA transcripts are cleaved in an ordered series of events. We have uncovered the molecular basis for the ordering of two essential cleavage steps at the 3'-end of 18S rRNA. Using in vitro and in vivo structure probing, RNA binding and cleavage experiments, and yeast genetics, we demonstrate that a conserved RNA sequence in the spacer region between the 18S and 5.8S rRNAs base-pairs with the decoding site of 18S rRNA in early assembly intermediates. Nucleolar cleavage at site A(2) excises this sequence element, leading to a conformational switch in pre-18S rRNA, by which the ribosomal decoding site is formed. This conformational switch positions the nuclease Nob1 for cytoplasmic cleavage at the 3'-end of 18S rRNA and is required for the final maturation step of 18S rRNA in vivo and in vitro. More generally, our data show that the intrinsic ability of RNA to form stable structural switches is exploited to order and regulate RNA-dependent biological processes.


Distinct community structures of soil nematodes from three ecologically different sites revealed by high-throughput amplicon sequencing of four 18S ribosomal RNA gene regions.

  • Harutaro Kenmotsu‎ et al.
  • PloS one‎
  • 2021‎

Quantitative taxonomic compositions of nematode communities help to assess soil environments due to their rich abundance and various feeding habitats. DNA metabarcoding by the 18S ribosomal RNA gene (SSU) regions were preferentially used for analyses of soil nematode communities, but the optimal regions for high-throughput amplicon sequencing have not previously been well investigated. In this work, we performed Illumina-based amplicon sequencing of four SSU regions (regions 1-4) to identify suitable regions for nematode metabarcoding using the taxonomic structures of nematodes from uncultivated field, copse, and cultivated house garden soils. The fewest nematode-derived sequence variants (SVs) were detected in region 3, and the total nematode-derived SVs were comparable in regions 1 and 4. The relative abundances of reads in regions 1 and 4 were consistent in both orders and feeding groups with prior studies, thus suggesting that region 4 is a suitable target for the DNA barcoding of nematode communities. Distinct community structures of nematodes were detected in the taxon, feeding habitat, and life-history strategy of each sample; i.e., Dorylamida- and Rhabditida-derived plant feeders were most abundant in the copse soil, Rhabditida-derived bacteria feeders in the house garden soil, and Mononchida- and Dorylamida-derived omnivores and predators and Rhabditida-derived bacteria feeders in the field soil. Additionally, low- and high-colonizer-persister (cp) groups of nematodes dominated in the house garden and copse soils, respectively, whereas both groups were found in the field soil, suggesting bacteria-rich garden soil, undisturbed and plant-rich copse soil, and a transient status of nematode communities in the field soil. These results were also supported by the maturity indices of the three sampling sites. Finally, the influence of the primer tail sequences was demonstrated to be insignificant on amplification. These findings will be useful for DNA metabarcoding of soil nematode communities by amplicon sequencing.


Loop-mediated isothermal amplification (LAMP) assays targeting 18S ribosomal RNA genes for identifying P. vivax and P. ovale species and mitochondrial DNA for detecting the genus Plasmodium.

  • Xi Chen‎ et al.
  • Parasites & vectors‎
  • 2021‎

Loop-mediated isothermal amplification (LAMP) has been widely used to diagnose various infectious diseases. Malaria is a globally distributed infectious disease attributed to parasites in the genus Plasmodium. It is known that persons infected with Plasmodium vivax and P. ovale are prone to clinical relapse of symptomatic blood-stage infections. LAMP has not previously been specifically evaluated for its diagnostic performance in detecting P. ovale in an epidemiological study, and no commercial LAMP or rapid diagnostic test (RDT) kits are available for specifically diagnosing infections with P. ovale.


Use of universal primers for the 18S ribosomal RNA gene and whole soil DNAs to reveal the taxonomic structures of soil nematodes by high-throughput amplicon sequencing.

  • Harutaro Kenmotsu‎ et al.
  • PloS one‎
  • 2021‎

Nematodes are abundant metazoans that play crucial roles in nutrient recycle in the pedosphere. Although high-throughput amplicon sequencing is a powerful tool for the taxonomic profiling of soil nematodes, polymerase chain reaction (PCR) primers for amplification of the 18S ribosomal RNA (SSU) gene and preparation of template DNAs have not been sufficiently evaluated. We investigated nematode community structure in copse soil using four nematode-specific (regions 1-4) and two universal (regions U1 and U2) primer sets for the SSU gene regions with two DNAs prepared from copse-derived mixed nematodes and whole soil. The major nematode-derived sequence variants (SVs) identified in each region was detected in both template DNAs. Order level taxonomy and feeding type of identified nematode-derived SVs were distantly related between the two DNA preparations, and the region U2 was closely related to region 4 in the non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity. Thus, the universal primers for region U2 could be used to analyze soil nematode communities. We further applied this method to analyze the nematodes living in two sampling sites of a sweet potato-cultivated field, where the plants were differently growing. The structure of nematode-derived SVs from the two sites was distantly related in the principal coordinate analysis (PCoA) with weighted unifrac distances, suggesting their distinct soil environments. The resultant ecophysiological status of the nematode communities in the copse and field on the basis of feeding behavior and maturity indices was fairly consistent with those of the copse- and the cultivated house garden-derived nematodes in prior studies. These findings will be useful for the DNA metabarcoding of soil eukaryotes, including nematodes, using soil DNAs.


Polyadenylation of ribosomal RNA in human cells.

  • Shimyn Slomovic‎ et al.
  • Nucleic acids research‎
  • 2006‎

The addition of poly(A)-tails to RNA is a process common to almost all organisms. In eukaryotes, stable poly(A)-tails, important for mRNA stability and translation initiation, are added to the 3' ends of most nuclear-encoded mRNAs, but not to rRNAs. Contrarily, in prokaryotes and organelles, polyadenylation stimulates RNA degradation. Recently, polyadenylation of nuclear-encoded transcripts in yeast was reported to promote RNA degradation, demonstrating that polyadenylation can play a double-edged role for RNA of nuclear origin. Here we asked whether in human cells ribosomal RNA can undergo polyadenylation. Using both molecular and bioinformatic approaches, we detected non-abundant polyadenylated transcripts of the 18S and 28S rRNAs. Interestingly, many of the post-transcriptionally added tails were composed of heteropolymeric poly(A)-rich sequences containing the other nucleotides in addition to adenosine. These polyadenylated RNA fragments are most likely degradation intermediates, as primer extension (PE) analysis revealed the presence of distal fragmented molecules, some of which matched the polyadenylation sites of the proximal cleavage products revealed by oligo(dT) and circled RT-PCR. These results suggest the presence of a mechanism to degrade ribosomal RNAs in human cells, that possibly initiates with endonucleolytic cleavages and involves the addition of poly(A) or poly(A)-rich tails to truncated transcripts, similar to that which operates in prokaryotes and organelles.


SARS-CoV-2 targets ribosomal RNA biogenesis.

  • V Talya Yerlici‎ et al.
  • Cell reports‎
  • 2024‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: