Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators.

  • Lalit Kumar Sharma‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

Pantothenate kinase (PANK) is the critical regulator of intracellular levels of coenzyme A and has emerged as an attractive target for treating neurological and metabolic disorders. This report describes the optimization, synthesis, and full structure-activity relationships of a new chemical series of pantothenate competitive PANK inhibitors. Potent drug-like molecules were obtained by optimizing a high throughput screening hit, using lipophilic ligand efficiency (LipE) derived from human PANK3 IC50 values to guide ligand development. X-ray crystal structures of PANK3 with index inhibitors from the optimization were determined to rationalize the emerging structure activity relationships. The analysis revealed a key bidentate hydrogen bonding interaction between pyridazine and R306' as a major contributor to the LipE gain observed in the optimization. A tractable series of PANK3 modulators with nanomolar potency, excellent LipE values, desirable physicochemical properties, and a well-defined structural binding mode was produced from this study.


Novel Ring Systems: Spiro[Cycloalkane] Derivatives of Triazolo- and Tetrazolo-Pyridazines.

  • Csilla Sepsey Für‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

In orderto synthesize new pyridazine derivatives anellated with different nitrogen heterocyclic moieties, spiro[cycloalkane]pyridazinones were transformed into the corresponding thioxo derivatives via a reaction with phosphorus pentasulfide. The reaction of the formed 2,3-diazaspiro[5.5] undec-3-ene-1-thiones with hydrazine provided the corresponding 1-hydrazono-2,3-diazaspiro[5.5] undec-3-ene, whose diazotization led to the desired spiro[cyclohexane-1,8'-tetrazolo[1,5-b]pyridazines. The reaction of dihydropyridazinethiones with benzhydrazide afforded the corresponding 7H-spiro[[1,2,4]triazolo[4,3-b]pyridazin-8,1'-cyclohexanes]. As a result of our work, seven new pyridazinethione intermediates were prepared, which served as starting materials for the synthesis of two kinds of new ring systems: tetrazolo-pyridazines and triazolo-pyridazines. The six new annulated derivatives were characterized by physicochemical parameters. The new N-heterocycles are valuable members of the large family of pyridazines.


Development of new highly potent imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1.

  • Espérance Moine‎ et al.
  • European journal of medicinal chemistry‎
  • 2015‎

Using a structure-based design approach, we have developed a new series of imidazo[1,2-b]pyridazines, targeting the calcium-dependent protein kinase-1 (CDPK1) from Toxoplasma gondii. Twenty derivatives were thus synthesized. Structure-activity relationships and docking studies confirmed the binding mode of these inhibitors within the ATP binding pocket of TgCDPK1. Two lead compounds (16a and 16f) were then identified, which were able to block TgCDPK1 enzymatic activity at low nanomolar concentrations, with a good selectivity profile against a panel of mammalian kinases. The potential of these inhibitors was confirmed in vitro on T. gondii growth, with EC50 values of 100 nM and 70 nM, respectively. These best candidates also displayed low toxicity to mammalian cells and were selected for further in vivo investigations on murine model of acute toxoplasmosis.


Selectivity and Physicochemical Optimization of Repurposed Pyrazolo[1,5-b]pyridazines for the Treatment of Human African Trypanosomiasis.

  • Westley F Tear‎ et al.
  • Journal of medicinal chemistry‎
  • 2020‎

From a high-throughput screen of 42 444 known human kinases inhibitors, a pyrazolo[1,5-b]pyridazine scaffold was identified to begin optimization for the treatment of human African trypanosomiasis. Previously reported data for analogous compounds against human kinases GSK-3β, CDK-2, and CDK-4 were leveraged to try to improve the selectivity of the series, resulting in 23a which showed selectivity for T. b. brucei over these three human enzymes. In parallel, properties known to influence the absorption, distribution, metabolism, and excretion (ADME) profile of the series were optimized resulting in 20g being progressed into an efficacy study in mice. Though 20g showed toxicity in mice, it also demonstrated CNS penetration in a PK study and significant reduction of parasitemia in four out of the six mice.


In Silico Structure-Guided Optimization and Molecular Simulation Studies of 3-Phenoxy-4-(3-trifluoromethylphenyl)pyridazines as Potent Phytoene Desaturase Inhibitors.

  • Lijun Yang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A series of novel 3-phenoxy-4-(3-trifluoromethylphenyl)pyridazines 2-5 were designed, based on the structure of our previous lead compound 1 through the in silico structure-guided optimization approach. The results showed that some of these new compounds showed a good herbicidal activity at the rate of 750 g ai/ha by both pre- and post-emergence applications, especially compound 2a, which displayed a comparable pre-emergence herbicidal activity to diflufenican at 300-750 g ai/ha, and a higher post-emergence herbicidal activity than diflufenican at the rates of 300-750 g ai/ha. Additionally, 2a was safe to wheat by both pre- and post-emergence applications at 300 g ai/ha, showing the compound's potential for weed control in wheat fields. Our molecular simulation studies revealed the important factors involved in the interaction between 2a and Synechococcus PDS. This work provided a lead compound for weed control in wheat fields.


The first Q-Tube based high-pressure synthesis of anti-cancer active thiazolo[4,5-c]pyridazines via the [4 + 2] cyclocondensation of 3-oxo-2-arylhydrazonopropanals with 4-thiazolidinones.

  • Hamada Mohamed Ibrahim‎ et al.
  • Scientific reports‎
  • 2020‎

A novel and efficient protocol for the synthesis of thiazolo[4,5-c]pyridazine derivatives was developed. The approach utilizes a high pressure Q-Tube reactor to promote cyclocondensation reactions between 3-oxo-2-arylhydrazonopropanals and 4-thiazolidinones. The process has a significantly high atom economy and a broad substrate scope, as well as being applicable to gram scale syntheses. The in vitro cytotoxic activities of the synthesized thiazolo[4,5-c]pyridazine derivatives were examined utilizing a MTT colorimetric assay with doxorubicin as a reference anti-cancer drug and three human cancer cell lines including HCT-116 (colon), MCF-7 (breast) and A549 (lung). The results show that thiazolopyridazines 7c, h, k and p have high cytotoxic activity against the MCF-7 cell line with respective IC50 values of 14.34, 10.39, 15.43 and 13.60 μM. Moreover, the thiazolopyridazine derivative 7s also show promising cytotoxic activity against the HCT-116 cell line with IC50 = 6.90 μM . Observations made in this effort serve as a basis for further investigations into the design and preparation of new anti-cancer drugs.


Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor.

  • Lyamin Z Bendjeddou‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

3,6-Disubstituted imidazo[1,2-b]pyridazine derivatives were synthesized to identify new inhibitors of various eukaryotic kinases, including mammalian and protozoan kinases. Among the imidazo[1,2-b]pyridazines tested as kinase inhibitors, several derivatives were selective for DYRKs and CLKs, with IC50 < 100 nM. The characterization of the kinome of several parasites, such as Plasmodium and Leishmania, has pointed out profound divergences between protein kinases of the parasites and those of the host. This led us to investigate the activities of the prepared compounds against 11 parasitic kinases. 3,6-Disubstituted imidazo[1,2-b]pyridazines showed potent inhibition of Plasmodium falciparum CLK1 (PfCLK1). Compound 20a was found to be the most selective product against CLK1 (IC50 = 82 nM), CLK4 (IC50 = 44 nM), DYRK1A (IC50 = 50 nM), and PfCLK1 (IC50 = 32 nM). The compounds were also tested against Leishmania amazonensis. Several compounds showed anti-leishmanial activity at rather high (10 μM) concentration, but were not toxic at 1 μM or 10 μM, as judged by viability assays carried out using a neuroblastoma cell line.


Selective and stable base pairing by alkynylated nucleosides featuring a spatially-separated recognition interface.

  • Hidenori Okamura‎ et al.
  • Nucleic acids research‎
  • 2022‎

Unnatural base pairs (UBPs) which exhibit a selectivity against pairing with canonical nucleobases provide a powerful tool for the development of nucleic acid-based technologies. As an alternative strategy to the conventional UBP designs, which involve utility of different recognition modes at the Watson-Crick interface, we now report that the exclusive base pairing can be achieved through the spatial separation of recognition units. The design concept was demonstrated with the alkynylated purine (NPu, OPu) and pyridazine (NPz, OPz) nucleosides endowed with nucleobase-like 2-aminopyrimidine or 2-pyridone ('pseudo-nucleobases') on their major groove side. These alkynylated purines and pyridazines exhibited exclusive and stable pairing properties by the formation of complementary hydrogen bonds between the pseudo-nucleobases in the DNA major groove as revealed by comprehensive Tm measurements, 2D-NMR analyses, and MD simulations. Moreover, the alkynylated purine-pyridazine pairs enabled dramatic stabilization of the DNA duplex upon consecutive incorporation while maintaining a high sequence-specificity. The present study showcases the separation of the recognition interface as a promising strategy for developing new types of UBPs.


Towards discovery of novel scaffold with potent antiangiogenic activity; design, synthesis of pyridazine based compounds, impact of hinge interaction, and accessibility of their bioactive conformation on VEGFR-2 activities.

  • Maiy Y Jaballah‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

Pyridazine scaffolds are considered privileged structures pertaining to its novelty, chemical stability, and synthetic feasibility. In our quest towards the development of novel scaffolds for effective vascular endothelial growth 2 (VEGFR-2) inhibition with antiangiogenic activity, four novel series of pyridazines were designed and synthesised. Five of the synthesised compounds; namely (8c, 8f, 15, 18b, and 18c) exhibited potent VEGFR-2 inhibitory potency (>80%); with IC50 values ranging from low micromolar to nanomolar range; namely compounds 8c, 8f, 15, 18c with (1.8 µM, 1.3 µM, 1.4 µM, 107 nM), respectively. Moreover, 3-[4-{(6-oxo-1,6-dihydropyridazin-3-yl)oxy}phenyl]urea derivative (18b) exhibited nanomolar potency towards VEGFR-2 (60.7 nM). In cellular assay, the above compounds showed excellent inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells at 10 μM concentration. Finally, an extensive molecular simulation study was performed to investigate the probable interaction with VEGFR-2.


Synthesis, Anticancer Activities and Molecular Docking Studies of a Novel Class of 2-Phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine Derivatives Bearing Sulfonamides.

  • Otmane Bourzikat‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

In the present study, new 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazines bearing sulfonamides were synthesized, characterized and evaluated for their anticancer activities. The structures of these derivatives were elucidated by 1H NMR, 13C NMR, infrared and high-resolution mass spectrometry for further validation of the target compound structures. The anticancer activities of the new molecules were evaluated against five human cancer cell lines, including A-549, Hs-683, MCF-7, SK-MEL-28 and B16-F10 cell lines using 5-fluorouracil and etoposide as the reference drugs. Among the tested compounds, 4e and 4f exhibited excellent activities in the same range of the positive controls, 5-fluorouracil and etoposide, against MCF-7 and SK-MEL-28 cancer cell lines, with IC50 values ranging from 1 to 10 μM. The molecular docking studies of 4e and 4f showed a strong binding with some kinases, which are linked to MCF-7 and SK-MEL-28 cancer cell lines.


Design and synthesis of Imidazo[1,2-b]pyridazine IRAK4 inhibitors for the treatment of mutant MYD88 L265P diffuse large B-cell lymphoma.

  • Yun Chen‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

Harboring MYD88 L265P mutation triggers tumors growth through the activation of NF-κB by interleukin-1 receptor associated kinase 4 (IRAK4) in diffuse large B-cell lymphoma (DLBCL), highlighting IRAK4 as a therapeutic target for tumors driven by aberrant MYD88 signaling. Herein, we report the design, synthesis, and structure-activity relationships of imidazo[1,2-b]pyridazines as potent IRAK4 inhibitors. The representative compound 5 exhibited excellent IRAK4 potency (IRAK4 IC50 = 1.3 nM) and favorable kinase selectivity profile. It demonstrated cellular selectivity for activated B cell-like (ABC) subtype DLBCL with MYD88 L265P mutation in cytotoxicity assay. The kinase inhibitory efficiency of compound 5 was further validated by Western blot analysis of phosphorylation of IRAK4 and downstream signaling in OCI-LY10 and TMD8 cells. Besides, combination of compound 5 and BTK inhibitor ibrutinib synergistically reduced the viability of TMD8 cells. These results indicated that compound 5 could be a promising IRAK4 inhibitor for the treatment of mutant MYD88 DLBCL.


Discovery and Characterization of Selective and Ligand-Efficient DYRK Inhibitors.

  • Scott H Henderson‎ et al.
  • Journal of medicinal chemistry‎
  • 2021‎

Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) regulates the proliferation and differentiation of neuronal progenitor cells during brain development. Consequently, DYRK1A has attracted interest as a target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Down's syndrome. Recently, the inhibition of DYRK1A has been investigated as a potential treatment for diabetes, while DYRK1A's role as a mediator in the cell cycle has garnered interest in oncologic indications. Structure-activity relationship (SAR) analysis in combination with high-resolution X-ray crystallography leads to a series of pyrazolo[1,5-b]pyridazine inhibitors with excellent ligand efficiencies, good physicochemical properties, and a high degree of selectivity over the kinome. Compound 11 exhibited good permeability and cellular activity without P-glycoprotein liability, extending the utility of 11 in an in vivo setting. These pyrazolo[1,5-b]pyridazines are a viable lead series in the discovery of new therapies for the treatment of diseases linked to DYRK1A function.


Inhibition of FLT3-ITD Kinase in Acute Myeloid Leukemia by New Imidazo[1,2-b]pyridazine Derivatives Identified by Scaffold Hopping.

  • Petra Břehová‎ et al.
  • Journal of medicinal chemistry‎
  • 2023‎

FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: