Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 8,843 papers

Cefepime-resistant Pseudomonas aeruginosa.

  • Ehimare Akhabue‎ et al.
  • Emerging infectious diseases‎
  • 2011‎

Resistance to extended-spectrum cephalosporins complicates treatment of Pseudomonas aeruginosa infections. To elucidate risk factors for cefepime-resistant P. aeruginosa and determine its association with patient death, we conducted a case-control study in Philadelphia, Pennsylvania. Among 2,529 patients hospitalized during 2001-2006, a total of 213 (8.4%) had cefepime-resistant P. aeruginosa infection. Independent risk factors were prior use of an extended-spectrum cephalosphorin (p<0.001), prior use of an extended-spectrum penicillin (p = 0.005), prior use of a quinolone (p<0.001), and transfer from an outside facility (p = 0.01). Among those hospitalized at least 30 days, mortality rates were higher for those with cefepime-resistant than with cefepime-susceptible P. aeruginosa infection (20.2% vs. 13.2%, p = 0.007). Cefepime-resistant P. aeruginosa was an independent risk factor for death only for patients for whom it could be isolated from blood (p = 0.001). Strategies to counter its emergence should focus on optimizing use of antipseudomonal drugs.


Pseudomonas aeruginosa population structure revisited.

  • Jean-Paul Pirnay‎ et al.
  • PloS one‎
  • 2009‎

At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa "core lineage" and typically exhibited the exoS(+)/exoU(-) genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set.


Antisense transcription in Pseudomonas aeruginosa.

  • Denitsa Eckweiler‎ et al.
  • Microbiology (Reading, England)‎
  • 2018‎

A large number of antisense transcripts have been detected in diverse microbial genomes and considerable effort has been devoted to elucidating the functional role of antisense transcription. In this study, we reanalysed extensive RNA sequencing data from the opportunistic pathogen Pseudomonas aeruginosa and found that the majority of genes have a propensity for antisense transcription. Although antisense transcripts were found in more than 80 % of the genes of the P. aeruginosa genome, the majority of sequencing reads were mapping sense and only a minority (<2 %) were mapping antisense to genes. Similarly to the sense expression levels, the antisense expression levels varied under different environmental conditions, with the sense and antisense expression levels often being inversely regulated and modulated by the activity of alternative sigma factors. Environment-modulated antisense transcription showed a bias towards being antisense to genes within regions of genomic plasticity and to those encoding small regulatory RNAs. In the future, the validation and functional characterization of antisense transcripts, and novel transcripts that are antisense to small regulatory RNAs in particular, have the potential to contribute to our understanding of the various levels of transcriptional regulation and its dynamics in the bacterial pathogen P. aeruginosa.


Active immunization with Pseudomonas aeruginosa vaccine protects mice from secondary Pseudomonas aeruginosa challenge post-influenza virus infection.

  • Xiaofeng Wu‎ et al.
  • Journal of thoracic disease‎
  • 2023‎

Influenza virus infection complicated by secondary bacterial pneumonia contributes significantly to death during seasonal or pandemic influenza. Secondary infection of Pseudomonas aeruginosa (P. aeruginosa) in influenza virus-infected patients contributes to morbidity and mortality.


Diversity of Pseudomonas aeruginosa Temperate Phages.

  • Genevieve Johnson‎ et al.
  • mSphere‎
  • 2022‎

Modern sequencing technologies have provided insight into the genetic diversity of numerous species, including the human pathogen Pseudomonas aeruginosa. Bacterial genomes often harbor bacteriophage genomes (prophages), which can account for upwards of 20% of the genome. Prior studies have found P. aeruginosa prophages that contribute to their host's pathogenicity and fitness. These advantages come in many different forms, including the production of toxins, promotion of biofilm formation, and displacement of other P. aeruginosa strains. While several different genera and species of P. aeruginosa prophages have been studied, there has not been a comprehensive study of the overall diversity of P. aeruginosa-infecting prophages. Here, we present the results of just such an analysis. A total of 6,852 high-confidence prophages were identified from 5,383 P. aeruginosa genomes from strains isolated from the human body and other environments. In total, 3,201 unique prophage sequences were identified. While 53.1% of these prophage sequences displayed sequence similarity to publicly available phage genomes, novel and highly mosaic prophages were discovered. Among these prophages, there is extensive diversity, including diversity within the functionally conserved integrase and C repressor coding regions, two genes responsible for prophage entering and persisting through the lysogenic life cycle. Analysis of integrase, C repressor, and terminase coding regions revealed extensive reassortment among P. aeruginosa prophages. This catalog of P. aeruginosa prophages provides a resource for future studies into the evolution of the species. IMPORTANCE Prophages play a critical role in the evolution of their host species and can also contribute to the virulence and fitness of pathogenic species. Here, we conducted a comprehensive investigation of prophage sequences from 5,383 publicly available Pseudomonas aeruginosa genomes from human as well as environmental isolates. We identified a diverse population of prophages, including tailed phages, inoviruses, and microviruses; 46.9% of the prophage sequences found share no significant sequence similarity with characterized phages, representing a vast array of novel P. aeruginosa-infecting phages. Our investigation into these prophages found substantial evidence of reassortment. In producing this, the first catalog of P. aeruginosa prophages, we uncovered both novel prophages as well as genetic content that have yet to be explored.


Silk-Based Therapeutics Targeting Pseudomonas aeruginosa.

  • Tina B McKay‎ et al.
  • Journal of functional biomaterials‎
  • 2019‎

Pseudomonas aeruginosa (P. aeruginosa) infections may lead to severe damage of the cornea, mucosa, and skin. The highly aggressive nature of P. aeruginosa and the rise in multi-drug resistance, particularly in nosocomial settings, lead to an increased risk for permanent tissue damage and potentially death. Thus, a growing need exists to develop alternative treatments to reduce both the occurrence of bacterial infection and biofilm development, as well as pathological progression post-infection. Silk derived from Bombyx mori silkworms serves as a unique biomaterial that is biocompatible with low immunogenicity and high versatility, and thereby ideal for stabilizing therapeutics. In this study, we assessed the cytotoxicity of P. aeruginosa on human corneal stromal stem cells and two mucosal cell lines (Caco-2 and HT29-MTX). To determine whether antibiotic-immobilized scaffolds can serve as alternative therapeutics to free, diffuse forms, we developed novel gentamicin-conjugated silk films as functional scaffolds and compared antimicrobial effects and free gentamicin. The advantages of generating a surface coating with a covalently-bound antibiotic may reduce potential side-effects associated with free gentamicin, as well as limit the diffusion of the drug. Our results suggest that gentamicin conjugated to native silk and carboxyl-enriched silk inhibits P. aeruginosa growth. Development of stabilized antibiotic treatments with surface toxicity selective against bacteria may serve as an alternative approach to treat active infections, as well as potential prophylactic use as coatings in high-risk cases, such as post-surgical complications or prolonged hospitalization.


Pseudomonas aeruginosa Genomic Structure and Diversity.

  • Jens Klockgether‎ et al.
  • Frontiers in microbiology‎
  • 2011‎

The Pseudomonas aeruginosa genome (G + C content 65-67%, size 5.5-7 Mbp) is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators, and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among P. aeruginosa strains and exhibits an interclonal sequence diversity of 0.5-0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNA(Lys) or tRNA(Gly) genes represent hotspots of inter- and intraclonal genomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of P. aeruginosa, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. One hundred ninety-eight of the 231 single nucleotide substitutions (SNPs) were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport, and secretion. In summary, P. aeruginosa is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer.


Pseudomonas aeruginosa pilin activates the inflammasome.

  • Cecilia S Lindestam Arlehamn‎ et al.
  • Cellular microbiology‎
  • 2011‎

IL-1β is produced from inactive pro-IL-1β by activation of caspase-1 brought about by a multi-subunit protein platform called the inflammasome. Many bacteria can trigger inflammasome activity through flagellin activation of the host protein NLRC4. However, strains of the common human pathogen Pseudomonas aeruginosa lacking flagellin can still activate the inflammasome. We set out to identify what non-flagellin components could produce this activation. Using mass spectroscopy, we identified an inflammasome-activating factor from P. aeruginosa as pilin, the major component of the type IV bacterial pilus. Purified pilin introduced into mouse macrophages by liposomal delivery activated caspase-1 and led to secretion of mature IL-1β, as did recombinant pilin purified from Escherichia coli. This was dependent on caspase-1 but not on the host inflammasome proteins NLRC4, NLRP3 or ASC. Mutants of P. aeruginosa strain PA103 lacking pilin did not activate the inflammasome following infection of macrophages with live bacteria. Type III secretion remained intact in the absence of pili, showing this was not due to a lack of effector delivery. Our observations show pilin is a novel activator of the inflammasome in addition to flagellin and the recently described PrgJ protein family, the basal body rod component of the type III apparatus.


Pseudomonas aeruginosa transcriptome during human infection.

  • Daniel M Cornforth‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.


Mechanotaxis directs Pseudomonas aeruginosa twitching motility.

  • Marco J Kühn‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

The opportunistic pathogen Pseudomonas aeruginosa explores surfaces using twitching motility powered by retractile extracellular filaments called type IV pili (T4P). Single cells twitch by sequential T4P extension, attachment, and retraction. How single cells coordinate T4P to efficiently navigate surfaces remains unclear. We demonstrate that P. aeruginosa actively directs twitching in the direction of mechanical input from T4P in a process called mechanotaxis. The Chp chemotaxis-like system controls the balance of forward and reverse twitching migration of single cells in response to the mechanical signal. Collisions between twitching cells stimulate reversals, but Chp mutants either always or never reverse. As a result, while wild-type cells colonize surfaces uniformly, collision-blind Chp mutants jam, demonstrating a function for mechanosensing in regulating group behavior. On surfaces, Chp senses T4P attachment at one pole, thereby sensing a spatially resolved signal. As a result, the Chp response regulators PilG and PilH control the polarization of the extension motor PilB. PilG stimulates polarization favoring forward migration, while PilH inhibits polarization, inducing reversal. Subcellular segregation of PilG and PilH efficiently orchestrates their antagonistic functions, ultimately enabling rapid reversals upon perturbations. The distinct localization of response regulators establishes a signaling landscape known as local excitation-global inhibition in higher-order organisms, identifying a conserved strategy to transduce spatially resolved signals.


Gene expression in Pseudomonas aeruginosa swarming motility.

  • Julien Tremblay‎ et al.
  • BMC genomics‎
  • 2010‎

The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility.


FimL regulates cAMP synthesis in Pseudomonas aeruginosa.

  • Yuki F Inclan‎ et al.
  • PloS one‎
  • 2011‎

Pseudomonas aeruginosa, a ubiquitous bacteria found in diverse ecological niches, is an important cause of acute infections in immunocompromised individuals and chronic infections in patients with Cystic Fibrosis. One signaling molecule required for the coordinate regulation of virulence factors associated with acute infections is 3', 5'-cyclic adenosine monophosphate, (cAMP), which binds to and activates a catabolite repressor homolog, Vfr. Vfr controls the transcription of many virulence factors, including those associated with Type IV pili (TFP), the Type III secretion system (T3SS), the Type II secretion system, flagellar-mediated motility, and quorum sensing systems. We previously identified FimL, a protein with histidine phosphotransfer-like domains, as a regulator of Vfr-dependent processes, including TFP-dependent motility and T3SS function. In this study, we carried out genetic and physiologic studies to further define the mechanism of action of FimL. Through a genetic screen designed to identify suppressors of FimL, we found a putative cAMP-specific phosphodiesterase (CpdA), suggesting that FimL regulates cAMP levels. Inactivation of CpdA increases cAMP levels and restores TFP-dependent motility and T3SS function to fimL mutants, consistent with in vivo phosphodiesterase activity. By constructing combinations of double and triple mutants in the two adenylate cyclase genes (cyaA and cyaB), fimL, and cpdA, we show that ΔfimL mutants resemble ΔcyaB mutants in TM defects, decreased T3SS transcription, and decreased cAMP levels. Similar to some of the virulence factors that they regulate, we demonstrate that CyaB and FimL are polarly localized. These results reveal new complexities in the regulation of diverse virulence pathways associated with acute P. aeruginosa infections.


A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection.

  • Zennia Jean C Gonzaga‎ et al.
  • Vaccines‎
  • 2021‎

Despite numerous efforts to develop an effective vaccine against Pseudomonas aeruginosa, no vaccine has yet been approved for human use. This study investigates the utility of the P. aeruginosa inherently produced polyhydroxyalkanaote (PHA) inclusions and associated host-cell proteins (HCP) as a particulate vaccine platform. We further engineered PHA inclusions to display epitopes derived from the outer membrane proteins OprF/OprI/AlgE (Ag) or the type III secretion system translocator PopB. PHA and engineered PHA beads induced antigen-specific humoral, cell-mediated immune responses, anti-HCP and anti-polysaccharide Psl responses in mice. Antibodies mediated opsonophagocytic killing and serotype-independent protective immunity as shown by 100% survival upon challenge with P. aeruginosa in an acute pneumonia murine model. Vaccines were stable at 4 °C for at least one year. Overall, our data suggest that vaccination with subcellular empty PHA beads was sufficient to elicit multiple immune effectors that can prevent P. aeruginosa infection.


Electroceutical Treatment of Pseudomonas aeruginosa Biofilms.

  • Devendra H Dusane‎ et al.
  • Scientific reports‎
  • 2019‎

Electroceutical wound dressings, especially those involving current flow with silver based electrodes, show promise for treating biofilm infections. However, their mechanism of action is poorly understood. We have developed an in vitro agar based model using a bioluminescent strain of Pseudomonas aeruginosa to measure loss of activity and killing when direct current was applied. Silver electrodes were overlaid with agar and lawn biofilms grown for 24 h. A 6 V battery with 1 kΩ ballast resistor was used to treat the biofilms for 1 h or 24 h. Loss of bioluminescence and a 4-log reduction in viable cells was achieved over the anode. Scanning electron microscopy showed damaged cells and disrupted biofilm architecture. The antimicrobial activity continued to spread from the anode for at least 2 days, even after turning off the current. Based on possible electrochemical ractions of silver electrodes in chlorine containing medium; pH measurements of the medium post treatment; the time delay between initiation of treatment and observed bactericidal effects; and the presence of chlorotyrosine in the cell lysates, hypochlorous acid is hypothesized to be the chemical agent responsible for the observed (destruction/killing/eradication) of these biofilm forming bacteria. Similar killing was obtained with gels containing only bovine synovial fluid or human serum. These results suggest that our in vitro model could serve as a platform for fundamental studies to explore the effects of electrochemical treatment on biofilms, complementing clinical studies with electroceutical dressings.


Vesiculation from Pseudomonas aeruginosa under SOS.

  • Reshma Maredia‎ et al.
  • TheScientificWorldJournal‎
  • 2012‎

Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity.


ZnuA and zinc homeostasis in Pseudomonas aeruginosa.

  • Victoria G Pederick‎ et al.
  • Scientific reports‎
  • 2015‎

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and a clinically significant opportunistic human pathogen. Central to the ability of P. aeruginosa to colonise both environmental and host niches is the acquisition of zinc. Here we show that P. aeruginosa PAO1 acquires zinc via an ATP-binding cassette (ABC) permease in which ZnuA is the high affinity, zinc-specific binding protein. Zinc uptake in Gram-negative organisms predominantly occurs via an ABC permease, and consistent with this expectation a P. aeruginosa ΔznuA mutant strain showed an ~60% reduction in cellular zinc accumulation, while other metal ions were essentially unaffected. Despite the major reduction in zinc accumulation, minimal phenotypic differences were observed between the wild-type and ΔznuA mutant strains. However, the effect of zinc limitation on the transcriptome of P. aeruginosa PAO1 revealed significant changes in gene expression that enable adaptation to low-zinc conditions. Genes significantly up-regulated included non-zinc-requiring paralogs of zinc-dependent proteins and a number of novel import pathways associated with zinc acquisition. Collectively, this study provides new insight into the acquisition of zinc by P. aeruginosa PAO1, revealing a hitherto unrecognized complexity in zinc homeostasis that enables the bacterium to survive under zinc limitation.


Phage Biocontrol of Pseudomonas aeruginosa in Water.

  • Ari Kauppinen‎ et al.
  • Viruses‎
  • 2021‎

Bacteriophage control of harmful or pathogenic bacteria has aroused growing interest, largely due to the rise of antibiotic resistance. The objective of this study was to test phages as potential agents for the biocontrol of an opportunistic pathogen Pseudomonas aeruginosa in water. Two P. aeruginosa bacteriophages (vB_PaeM_V523 and vB_PaeM_V524) were isolated from wastewater and characterized physically and functionally. Genomic and morphological characterization showed that both were myoviruses within the Pbunavirus genus. Both had a similar latent period (50-55 min) and burst size (124-134 PFU/infected cell), whereas there was variation in the host range. In addition to these environmental phages, a commercial Pseudomonas phage, JG003 (DSM 19870), was also used in the biocontrol experiments. The biocontrol potential of the three phages in water was tested separately and together as a cocktail against two P. aeruginosa strains; PAO1 and the environmental strain 17V1507. With PAO1, all phages initially reduced the numbers of the bacterial host, with phage V523 being the most efficient (>2.4 log10 reduction). For the environmental P. aeruginosa strain (17V1507), only the phage JG003 caused a reduction (1.2 log10) compared to the control. The cocktail of three phages showed a slightly higher decrease in the level of the hosts compared to the use of individual phages. Although no synergistic effect was observed in the host reduction with the use of the phage cocktail, the cocktail-treated hosts did not appear to acquire resistance as rapidly as hosts treated with a single phage. The results of this study provide a significant step in the development of bacteriophage preparations for the control of pathogens and harmful microbes in water environments.


Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

  • Michael A Pazos‎ et al.
  • PLoS pathogens‎
  • 2017‎

Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.


Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1.

  • Zoe A Dyson‎ et al.
  • Genome announcements‎
  • 2016‎

We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA.


Novel Pyoverdine Inhibitors Mitigate Pseudomonas aeruginosa Pathogenesis.

  • Daniel R Kirienko‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Pseudomonas aeruginosa is a clinically important pathogen that causes a variety of infections, including urinary, respiratory, and other soft-tissue infections, particularly in hospitalized patients with immune defects, cystic fibrosis, or significant burns. Antimicrobial resistance is a substantial problem in P. aeruginosa treatment due to the inherent insensitivity of the pathogen to a wide variety of antimicrobial drugs and its rapid acquisition of additional resistance mechanisms. One strategy to circumvent this problem is the use of anti-virulent compounds to disrupt pathogenesis without directly compromising bacterial growth. One of the principle regulatory mechanisms for P. aeruginosa's virulence is the iron-scavenging siderophore pyoverdine, as it governs in-host acquisition of iron, promotes expression of multiple virulence factors, and is directly toxic. Some combination of these activities renders pyoverdine indispensable for pathogenesis in mammalian models. Here we report identification of a panel of novel small molecules that disrupt pyoverdine function. These molecules directly act on pyoverdine, rather than affecting its biosynthesis. The compounds reduce the pathogenic effect of pyoverdine and improve the survival of Caenorhabditis elegans when challenged with P. aeruginosa by disrupting only this single virulence factor. Finally, these compounds can synergize with conventional antimicrobials, forming a more effective treatment. These compounds may help to identify, or be modified to become, viable drug leads in their own right. Finally, they also serve as useful tool compounds to probe pyoverdine activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: