Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 126 papers

A RP-UFLC Assay for Protein Tyrosine Phosphatases: Focus on Protein Tyrosine Phosphatase Non-Receptor Type 2 (PTPN2).

  • Romain Duval‎ et al.
  • Scientific reports‎
  • 2015‎

Protein tyrosine phosphatases (PTPs) are involved in numerous signaling pathways and dysfunctions of certain of these enzymes have been linked to several human diseases including cancer and autoimmune diseases. PTPN2 is a PTP mainly expressed in hematopoietic cells and involved in growth factor and JAK/STAT signaling pathways. Loss of function analyses in patients with mutation/deletion of the PTPN2 gene and knock-out mouse models indicate that PTPN2 acts as a tumor suppressor in T-cell malignancies and as a regulator of inflammation and immunity. The use of sensitive and quantitative assays is of prime importance to better characterize the biochemical properties of PTPN2 and its biological roles. We report a highly sensitive non-radioactive assay that allows the measurement of the activity of purified PTPN2 and of endogenous PTPN2 immunoprecipitated on agarose beads. The assay relies on separation and quantitation by reverse-phase ultra fast liquid chromatography (RP-UFLC) of a fluorescein-labeled phosphotyrosine peptide substrate derived from the sequence of STAT1. The applicability and reliability of this approach is supported by kinetic and mechanistic studies using PTP inhibitors. More broadly, our PTPN2 assay provides the basis for the design of flexible methods for the measurement of other PTPs.


Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation.

  • Marianne R Spalinger‎ et al.
  • Mucosal immunology‎
  • 2022‎

Macrophages are a heterogeneous population of innate immune cells that are often divided into two major subsets: classically activated, typically pro-inflammatory (M1) macrophages that mediate host defense, and alternatively activated, tolerance-inducing (M2) macrophages that exert homeostatic and tissue-regenerative functions. Disturbed macrophage function/differentiation results either in inadequate, excessive immune activation or in a failure to induce efficient protective immune responses against pathogens. Loss-of-function variants in protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with chronic inflammatory disorders, but the effect of macrophage-intrinsic PTPN2 loss is still poorly understood. Here we report that PTPN2-deficient macrophages fail to acquire an alternatively activated/M2 phenotype. This was the consequence of reduced IL-6 receptor expression and a failure to induce IL-4 receptor in response to IL-6, resulting in an inability to respond to the key M2-inducing cytokine IL-4. Ultimately, failure to adequately respond to IL-6 and IL-4 resulted in increased levels of M1 macrophage marker expression in vitro and exacerbated lung inflammation upon infection with Nippostrongylus brasiliensis in vivo. These results demonstrate that PTPN2 loss interferes with the ability of macrophages to adequately respond to inflammatory stimuli and might explain the increased susceptibility of PTPN2 loss-of-function carriers to developing inflammatory diseases.


Tyrosine-protein phosphatase non-receptor type 2 inhibits alveolar bone resorption in diabetic periodontitis via dephosphorylating CSF1 receptor.

  • Dongjiao Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Tyrosine-protein phosphatase non-receptor type 2 (PTPN2) is an important protection factor for diabetes and periodontitis, but the underlying mechanism remains elusive. This study aimed to identify the substrate of PTPN2 in mediating beneficial effects of 25-Hydroxyvitamin D3 (25(OH)2D3 ) on diabetic periodontitis. 25(OH)2D3 photo-affinity probe was synthesized with the minimalist linker and its efficacy to inhibit alveolar bone loss, and inflammation was evaluated in diabetic periodontitis mice. The probe was used to pull down the lysates of primary gingival fibroblasts. We identified PTPN2 as a direct target of 25(OH)2D3 , which effectively inhibited inflammation and bone resorption in diabetic periodontitis mice. In addition, we found that colony-stimulating factor 1 receptor (CSF1R) rather than JAK/STAT was the substrate of PTPN2 to regulate bone resorption. PTPN2 direct interacted with CSF1R and dephosphorylated Tyr807 residue. In conclusion, PTPN2 dephosphorylates CSF1R at Y807 site and inhibits alveolar bone resorption in diabetic periodontitis mice. PTPN2 and CSF1R are potential targets for the therapy of diabetic periodontitis or other bone loss-related diseases.


Protein Tyrosine Phosphatase Non-Receptor Type 2 Function in Dendritic Cells Is Crucial to Maintain Tissue Tolerance.

  • Larissa Hering‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) plays a pivotal role in immune homeostasis and has been associated with human autoimmune and chronic inflammatory diseases. Though PTPN2 is well-characterized in lymphocytes, little is known about its function in innate immune cells. Our findings demonstrate that dendritic cell (DC)-intrinsic PTPN2 might be the key to explain the central role for PTPN2 in the immune system to maintain immune tolerance. Partial genetic PTPN2 ablation in DCs resulted in spontaneous inflammation, particularly in skin, liver, lung and kidney 22 weeks post-birth. DC-specific PTPN2 controls steady-state immune cell composition and even incomplete PTPN2 deficiency in DCs resulted in enhanced organ infiltration of conventional type 2 DCs, accompanied by expansion of IFNγ-producing effector T-cells. Consequently, the phenotypic effects of DC-specific PTPN2 deficiency were abolished in T-cell deficient Rag knock-out mice. Our data add substantial knowledge about the molecular mechanisms to prevent inflammation and maintain tissue tolerance.


Identification of the tyrosine-protein phosphatase non-receptor type 2 as a rheumatoid arthritis susceptibility locus in europeans.

  • Joanna E Cobb‎ et al.
  • PloS one‎
  • 2013‎

Genome-wide association studies have facilitated the identification of over 30 susceptibility loci for rheumatoid arthritis (RA). However, evidence for a number of potential susceptibility genes have not so far reached genome-wide significance in studies of Caucasian RA.


Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor.

  • Hien Thi Thu Le‎ et al.
  • BMB reports‎
  • 2017‎

Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2. [BMB Reports 2017; 50(6): 329-334].


An Integrated Computational Approach for Plant-Based Protein Tyrosine Phosphatase Non-Receptor Type 1 Inhibitors.

  • Shabana Bibi‎ et al.
  • Current computer-aided drug design‎
  • 2017‎

Protein tyrosine phosphatase non-receptor type 1 is a therapeutic target for the type 2 diabetes mellitus. According to the International Diabetes Federation 2015 report, one out of 11 adults suffers from diabetes mellitus globally.


Genetic Variants in Protein Tyrosine Phosphatase Non-Receptor Type 23 Are Responsible for Mesiodens Formation.

  • Ploy Adisornkanj‎ et al.
  • Biology‎
  • 2023‎

A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.


Wedelolactone improves the renal injury induced by lipopolysaccharide in HK-2 cells by upregulation of protein tyrosine phosphatase non-receptor type 2.

  • Deyuan Zhi‎ et al.
  • The Journal of international medical research‎
  • 2021‎

To explore the effects of wedelolactone (WEL) on sepsis-induced renal injury in the human renal proximal tubular epithelial cell line HK-2.


The first association study of Protein Tyrosine Phosphatase, Non-Receptor Type 2 (PTPN2) gene polymorphisms in Malaysian patients with Crohn's disease.

  • Xiang Ting Goh‎ et al.
  • Gene‎
  • 2022‎

Crohn's disease (CD) is one of the sub-entities of Inflammatory Bowel Disease which causes chronic inflammation in the gastrointestinal tract. The development of CD has shown to have a strong genetic association. Therefore, the present study aimed to investigate the association between genetic polymorphisms in a susceptible locus of CD, the protein tyrosine phosphatase, non-receptor type 2 (PTPN2) gene and the development of CD in Malaysian patients. A total of 137 CD patients and 274 matched healthy controls were recruited in the present study. Genomic DNA was extracted from the venous blood of participants and five targeted single nucleotide polymorphisms (SNPs) in the PTPN2 gene were genotyped using polymerase chain reaction. Associations between the SNPs and CD were determined using Fisher's exact test and odds ratio. Findings showed that all five selected SNPs were not significantly associated with the development of CD in Malaysian patients, which was in contrast to studies among the European populations. Malaysian Chinese with rs487273 heterozygous G/T genotype was found to have a lower occurrence of CD (P-value = 0.0253; OR = 0.4396). Patients with rs2542152 homozygous T genotype were associated with stricturing behaviour (P-value = 0.0302, OR = 2.9944). The rs16939895 A/G genotype was associated with inflammation at the ileum site (P-value = 0.0387, OR = 2.2105)while homozygous G genotype was associated with colonic CD (P-value = 0.0164, OR = 2.3917). Functional studies of these SNPs are needed to evaluate their potential use as a biomarker for disease phenotypes among Asian patients.


MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2).

  • Rihan Wu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system, and its pathogenesis remains largely unclear. Much attention has been paid to the role of microRNAs (miRs) in regulation of autoimmune disease. Here, we found, for the first time, that miR-448 expression was significantly increased in periphery blood mononuclear cells (PBMC) and cerebrospinal fluid (CSF) of patients with MS, and its expression positively correlated with the disease severity. We further demonstrated that CD4+ T cells, especially the Th17 lineage, were the major source of miR-448 expression. Using gain- and loss-of-function approaches, we further verified that miR-448 could enhance Th17 differentiation, characterized by up-regulated expression levels of IL-17A and RORγt. Interleukin (IL)-1β as a potent driver of pathogenic Th17 cells was able to strongly induce miR-448 expression in CD4+ T cells through activating NF-κB pathway. Additionally, we identified that miR-448 directly targeted protein tyrosine phosphatase non-receptor type 2 (PTPN2), which has been known as an anti-inflammatory player with capacity to suppress Th17 differentiation. We also observed markedly decreased expression of PTPN2 in PBMC and CSF of MS patients. Our results suggest that miR-448 might promote Th17 differentiation in MS and thus aggravate the disease through inhibiting PTPN2.


Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype.

  • Sarah L Williamson‎ et al.
  • European journal of human genetics : EJHG‎
  • 2015‎

Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype.


The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis.

  • Natalia I Díaz-Valdivia‎ et al.
  • Oncogene‎
  • 2020‎

Caveolin-1 (CAV1) enhanced migration, invasion, and metastasis of cancer cells is inhibited by co-expression of the glycoprotein E-cadherin. Although the two proteins form a multiprotein complex that includes β-catenin, it remained unclear how this would contribute to blocking the metastasis promoting function of CAV1. Here, we characterized by mass spectrometry the protein composition of CAV1 immunoprecipitates from B16F10 murine melanoma cells expressing or not E-cadherin. The novel protein tyrosine phosphatase PTPN14 was identified by mass spectrometry analysis exclusively in co-immunoprecipitates of CAV1 with E-cadherin. Interestingly, PTPN14 is implicated in controlling metastasis, but only few known PTPN14 substrates exist. We corroborated by western blotting experiments that PTPN14 and CAV1 co-inmunoprecipitated in the presence of E-cadherin in B16F10 melanoma and other cancer cells. Moreover, the CAV1(Y14F) mutant protein was shown to co-immunoprecipitate with PTPN14 even in the absence of E-cadherin, and overexpression of PTPN14 reduced CAV1 phosphorylation on tyrosine-14, as well as suppressed CAV1-enhanced cell migration, invasion and Rac-1 activation in B16F10, metastatic colon [HT29(US)] and breast cancer (MDA-MB-231) cell lines. Finally, PTPN14 overexpression in B16F10 cells reduced the ability of CAV1 to induce metastasis in vivo. In summary, we identify here CAV1 as a novel substrate for PTPN14 and show that overexpression of this phosphatase suffices to reduce CAV1-induced metastasis.


MicroRNA-574-5p in gastric cancer cells promotes angiogenesis by targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3).

  • Shu Zhang‎ et al.
  • Gene‎
  • 2020‎

We elucidate in this study that up-regulation of miR-574-5p in gastric cancer cells under hypoxic conditions contributed to angiogenesis. We found that miR-574-5p and HIF-1α were up-regulated in gastric cancer cells cultured under 2% O2 or in medium containing CoCl2, and in muscle tissues of mice injected with NaNO2, indicating up-regulation of miR-574-5p in vitro or in vivo in response to hypoxic conditions. We hypothesized that up-regulation of miR-574-5p could promote angiogenesis. Transfection of gastric cancer cells with miR-574-5p mimics or inhibitor resulted in increase or decrease in the expression of VEGFA. Viability, migration, invasion and tube formation of HUVECs cultured with conditioned medium from SGC/574 cells transfected with miR-574-5p inhibitor were reduced. Tube formation of HUVECs cultured with conditioned medium from SGC-7901 cells transfected with miR-574-5p mimics was increased. An in vivo study demonstrated that inhibition of miR-574-5p in the tumor xenografts of mice reduced the expression of CD31 one of the endothelial cell markers. We identified PTPN3 a tyrosine phosphatase as a target of miR-574-5p that bound to the 3'UTR of PTPN3 mRNA to inhibit the expression of PTPN3. Furthermore, the data in this study demonstrated that inhibition of PTPN3 in gastric cancer cells enhanced phosphorylation of p44/42 MAPKs and promoted angiogenesis. We conclude that miR-574-5p in gastric cancer cells promoted angiogenesis via enhancing phosphorylation of p44/42 MAPKs by miR-574-5p inhibition of PTPN3 expression.


Role of protein tyrosine phosphatase non-receptor type 7 in the regulation of TNF-α production in RAW 264.7 macrophages.

  • Huiyun Seo‎ et al.
  • PloS one‎
  • 2013‎

Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7), a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs). Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNF-α production in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS) that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA) analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNF-α production. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2) and p38 that increase LPS-induced TNF-α production in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.


Protective Effect of Pinitol Against Inflammatory Mediators of Rheumatoid Arthritis via Inhibition of Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22).

  • Kewen Zheng‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2017‎

BACKGROUND The aim of the current study was to explore the anti-arthritic effect of pinitol via assessing its effect on various inflammatory mediators and its possible mechanism of action. MATERIAL AND METHODS We assessed the anti-arthritic effect of pinitol in a formaldehyde- and CFA-induced arthritic model in Wistar Swiss albino strain rats divided into 6 groups. The rats received different doses of pinitol and indomethacin for 28 days. The arthritic index and body weight were determined at regular intervals, together with hepatic, hematological, and antioxidant parameters. The expression of proinflammatory cytokines (e.g., IL-6, TNF-α, and IL-1β) and inflammatory mediators (e.g., COX-2 and VEGF) were also estimated with histopathological evaluation of the joint tissue of rats. A docking study of pinitol with PTPN22 was also carried out. RESULTS The CFA-induced model rats developed redness and nodules in the tail and front paws, and the arthritic control (AC) group rats showed similar symptoms, which were decreased by pinitol administration. The body weight of AC group rats was decreased, while pinitol-treated rats showed considerably increased body weight. Hematological, hepatic, and antioxidant parameters were altered by pinitol in a dose-dependent manner. Pinitol significantly decreased the elevated concentration of proinflammatory cytokines and inflammatory mediators, with improvement in histopathological condition. The docking study suggested that pinitol efficiently interacted with PTPN22 via Arg59, Tyr60, Leu106, and Lys138 by creating close interatomic hydrogen bonds and hydrophobic contacts. CONCLUSIONS Pinitol showed anti-arthritic effects via reduction of proinflammatory cytokines and inflammatory mediators via inhibition of PTPN22.


Polymorphisms in Protein Tyrosine Phosphatase Non-receptor Type 2 and 22 (PTPN2/22) Are Linked to Hyper-Proliferative T-Cells and Susceptibility to Mycobacteria in Rheumatoid Arthritis.

  • Robert C Sharp‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

A shared genetic pre-disposition, chronic inflammation, and treatment with similar biologics between Rheumatoid arthritis (RA) and Crohn's disease (CD) have intrigued us to investigate whether the two disorders share trigger association or possible causation. We hypothesized earlier that Single Nucleotide Polymorphisms (SNPs) in the negative regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response, susceptibility to environmental triggers, and continued apoptosis as seen in chronic inflammation in RA and CD. To test the hypothesis, peripheral leukocytes samples from 132 consented subjects were genotyped for 9 SNPs in PTPN2/22 using TaqMan™ genotyping. The effect of the SNPs on PTPN2/22 and IFN-γ expression was determined using real time PCR. T-cell proliferation and response to phytohematoagglutonin (PHA) mitogen and mycobacterial antigens were determined by BrdU proliferation assay. Blood samples were also analyzed for the Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene by nPCR. Out of 9 SNPs examined, heterozygous (TC) or minor (CC) alleles of PTPN2:rs478582 occurred in 79% RA compared to 60% healthy controls (p-values ≤ 0.05; OR = 2.28). Similarly, heterozygous (GA) or minor (AA) alleles of PTPN22:rs2476601 occurred in 29% RA compared to 6% healthy controls (p-values ≤ 0.05; OR = 5.90). PTPN2/22 expression in RA was decreased by 1.2-fold compared to healthy controls. PTPN2:rs478582 upregulated IFN-γ in RA by 1.5-fold. Combined PTPN2:rs478582 and PTPN22:rs2476601 increased T-cell proliferation by 2.7-fold when treated with PHA. Surprisingly, MAP DNA was detected in 34% of RA samples compared to 8% healthy controls, (p-values ≤ 0.05, OR = 5.74). RA samples with PTPN2:rs478582 and/or PTPN22:rs2476601 were more positive for MAP than samples without polymorphisms. Combined occurrence of PTPN2:rs478582 and PTPN22:rs2476601 in association with the presence of MAP has significantly increased T-cell response and elevated IFN-γ expression in RA samples. The data suggest that genetic polymorphisms may play vital role in T-cell regulation, susceptibility to mycobacteria and ultimately response to treatment. This is the first study to report the detection of MAP DNA in the blood of RA patients; further studies are needed using larger number of samples.


pTyr421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1).

  • Vijayababu M Radhakrishnan‎ et al.
  • PloS one‎
  • 2014‎

Cortactin (CTTN), first identified as a major substrate of the Src tyrosine kinase, actively participates in branching F-actin assembly and in cell motility and invasion. CTTN gene is amplified and its protein is overexpressed in several types of cancer. The phosphorylated form of cortactin (pTyr(421)) is required for cancer cell motility and invasion. In this study, we demonstrate that a majority of the tested primary colorectal tumor specimens show greatly enhanced expression of pTyr(421)-CTTN, but no change at the mRNA level as compared to healthy subjects, thus suggesting post-translational activation rather than gene amplification in these tumors. Curcumin (diferulolylmethane), a natural compound with promising chemopreventive and chemosensitizing effects, reduced the indirect association of cortactin with the plasma membrane protein fraction in colon adenocarcinoma cells as measured by surface biotinylation, mass spectrometry, and Western blotting. Curcumin significantly decreased the pTyr(421)-CTTN in HCT116 cells and SW480 cells, but was ineffective in HT-29 cells. Curcumin physically interacted with PTPN1 tyrosine phosphatases to increase its activity and lead to dephosphorylation of pTyr(421)-CTTN. PTPN1 inhibition eliminated the effects of curcumin on pTyr(421)-CTTN. Transduction with adenovirally-encoded CTTN increased migration of HCT116, SW480, and HT-29. Curcumin decreased migration of HCT116 and SW480 cells which highly express PTPN1, but not of HT-29 cells with significantly reduced endogenous expression of PTPN1. Curcumin significantly reduced the physical interaction of CTTN and pTyr(421)-CTTN with p120 catenin (CTNND1). Collectively, these data suggest that curcumin is an activator of PTPN1 and can reduce cell motility in colon cancer via dephosphorylation of pTyr(421)-CTTN which could be exploited for novel therapeutic approaches in colon cancer therapy based on tumor pTyr(421)-CTTN expression.


Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis.

  • Belén Morón‎ et al.
  • PloS one‎
  • 2013‎

Spermidine is a dietary polyamine that is able to activate protein tyrosine phosphatase non-receptor type 2 (PTPN2). As PTPN2 is known to be a negative regulator of interferon-gamma (IFN-γ)-induced responses, and IFN-γ stimulation of immune cells is a critical process in the immunopathology of inflammatory bowel disease (IBD), we wished to explore the potential of spermidine for reducing pro-inflammatory effects in vitro and in vivo.


Regulation of platelet-activating factor-mediated interleukin-6 promoter activation by the 48 kDa but not the 45 kDa isoform of protein tyrosine phosphatase non-receptor type 2.

  • Geneviève Hamel-Côté‎ et al.
  • Cell & bioscience‎
  • 2019‎

An underlying state of inflammation is thought to be an important cause of cardiovascular disease. Among cells involved in the early steps of atherosclerosis, monocyte-derived dendritic cells (Mo-DCs) respond to inflammatory stimuli, including platelet-activating factor (PAF), by the induction of various cytokines, such as interleukin 6 (IL-6). PAF is a potent phospholipid mediator involved in both the onset and progression of atherosclerosis. It mediates its effects by binding to its cognate G-protein coupled receptor, PAFR. Activation of PAFR-induced signaling pathways is tightly coordinated to ensure specific cell responses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: