Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,513 papers

Chemical Inhibition of Protein Methyltransferases.

  • Matthieu Schapira‎
  • Cell chemical biology‎
  • 2016‎

Protein methyltransferases (PMTs) participate in the epigenetic control of cell fate and other signaling pathways that are deregulated in disease, and the first PMT inhibitors have entered clinical trials in oncology. This review discusses structural studies that recently uncovered the mode of action of compounds in the clinic, as well as challenges and opportunities in the development of PMT inhibitors. It examines inhibitors that compete with the highly polar cofactor but preserve cell penetrance, and allosteric modes of inhibition. Vectors of optimization at the substrate-binding site and the potential of fragment screening approaches are discussed. Finally, the review presents strategies focused on targeting non-catalytic domains of PMTs or scaffolding subunits of chromatin complexes. Overall, although targeting PMTs remains a challenge, recent successes in the field are diverse and encouraging.


Selective inhibitors of protein methyltransferases.

  • H Ümit Kaniskan‎ et al.
  • Journal of medicinal chemistry‎
  • 2015‎

Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.


Chemical Biology of Protein N-Terminal Methyltransferases.

  • Rong Huang‎
  • Chembiochem : a European journal of chemical biology‎
  • 2019‎

Protein α-N-terminal methylation is catalyzed by protein N-terminal methyltransferases. The prevalent occurrence of this methylation in ribosomes, myosin, and histones implies its function in protein-protein interactions. Although its full spectrum of function has not yet been outlined, recent discoveries have revealed the emerging roles of α-N-terminal methylation in protein-chromatin interactions, DNA damage repair, and chromosome segregation. Herein, an overview of the discovery of protein N-terminal methyltransferases and functions of α-N-terminal methylation is presented. In addition, substrate recognition, mechanisms, and inhibition of N-terminal methyltransferases are reviewed. Opportunities and gaps in protein α-N-terminal methylation are also discussed.


Tumor-suppressive functions of protein lysine methyltransferases.

  • Nur Aziz‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.


Clinicopathologic significance of protein lysine methyltransferases in cancer.

  • Theodore Vougiouklakis‎ et al.
  • Clinical epigenetics‎
  • 2020‎

Protein lysine methyltransferases (PKMTs) constitute a large family of approximately 50 chromatin modifiers that mono-, di- and/or tri-methylate lysine residues on histone and non-histone substrates. With the advent of The Cancer Genome Atlas, it became apparent that this family of chromatin modifiers harbors frequent genetic and expression alterations in multiple types of cancer. In this regard, past and ongoing preclinical studies have provided insight into the mechanisms of action of some of these enzymes, laying the ground for the ongoing development of PKMT inhibitors as novel anticancer therapeutics. The purpose of this review is to summarize existing data obtained by different research groups through immunohistochemical analysis of the protein expression levels of PKMTs, and their respective clinicopathologic associations. We focused on studies that used immunohistochemistry to associate protein expression levels of specific PKMTs, as well as several established histone methylation marks, with clinicopathologic features and survival outcomes in various cancer types. We also review ongoing clinical trials of PKMT inhibitors in cancer treatment. This review underscores the clinical relevance and potential of targeting the family of PKMT enzymes as the next generation of cancer therapy.


Functional interplay between protein arginine methyltransferases in Trypanosoma brucei.

  • Kaylen Lott‎ et al.
  • MicrobiologyOpen‎
  • 2014‎

Arginine methylation is a common posttranslational modification that has far-reaching cellular effects. Trypanosoma brucei is an early-branching eukaryote with four characterized protein arginine methyltransferases (PRMTs), one additional putative PRMT, and over 800 arginine methylated proteins, suggesting that arginine methylation has widespread impacts in this organism. While much is known about the activities of individual T. brucei PRMTs (TbPRMTs), little is known regarding how TbPRMTs function together in vivo. In this study, we analyzed single and selected double TbPRMT knockdowns for the impact on expression of TbPRMTs and global methylation status. Repression of TbPRMT1 caused a decrease in asymmetric dimethylarginine and a marked increase in monomethylarginine that was catalyzed by TbPRMT7, suggesting that TbPRMT1 and TbPRMT7 can compete for the same substrate. We also observed an unexpected and strong interdependence between TbPRMT1 and TbPRMT3 protein levels. This finding, together with the observation of similar methyl landscape profiles in TbPRMT1 and TbPRMT3 repressed cells, strongly suggests that these two enzymes form a functional complex. We show that corepression of TbPRMT6/7 synergistically impacts growth of procyclic-form T. brucei. Our findings also implicate the actions of noncanonical, and as yet unidentified, PRMTs in T. brucei. Together, our studies indicate that TbPRMTs display a functional interplay at multiple levels.


Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

  • Marie-Chloé Boulanger‎ et al.
  • The Biochemical journal‎
  • 2004‎

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.


The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation.

  • Markus A Kleinschmidt‎ et al.
  • Nucleic acids research‎
  • 2008‎

Protein arginine methyltransferases (PRMT) have been implicated in the regulation of transcription. They are recruited to promoters via interaction with transcription factors and exert their coactivator function by methylating arginine residues in histones and other chromatin proteins. Here, we employ an unbiased approach to identify novel target genes, which are under the control of two members of the enzyme family, PRMT1 and CARM1/PRMT4 (coactivator associated arginine methyltransferase 1). By using cDNA microarray analysis, we find that the siRNA-mediated single knockdown of neither CARM1 nor PRMT1 causes significant changes in gene expression. In contrast, double knockdown of both enzymes results in the deregulated expression of a large group of genes, among them the CITED2 gene. Cytokine-stimulated expression analysis indicates that transcriptional activation of CITED2 depends on STAT5 and the coactivation of both PRMTs. ChIP analysis identifies the CITED2 gene as a direct target gene of STAT5, CARM1 and PRMT1. In reporter gene assays, we show that STAT5-mediated transcription is cooperatively enhanced by CARM1 and PRMT1. Interaction assays reveal a cytokine-induced association of STAT5 and the two PRMTs. Our data demonstrate a widespread cooperation of CARM1 and PRMT1 in gene activation as well as repression and that STAT5-dependent transcription of the CITED2 gene is a novel pathway coactivated by the two methyltransferases.


Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization.

  • Obdulia Rabal‎ et al.
  • Journal of cheminformatics‎
  • 2018‎

Epigenetic therapies are being investigated for the treatment of cancer, cognitive disorders, metabolic alterations and autoinmune diseases. Among the different epigenetic target families, protein lysine methyltransferases (PKMTs), are especially interesting because it is believed that their inhibition may be highly specific at the functional level. Despite its relevance, there are currently known inhibitors against only 10 out of the 50 SET-domain containing members of the PKMT family. Accordingly, the identification of chemical probes for the validation of the therapeutic impact of epigenetic modulation is key. Moreover, little is known about the mechanisms that dictate their substrate specificity and ligand selectivity. Consequently, it is desirable to explore novel methods to characterize the pharmacological similarity of PKMTs, going beyond classical phylogenetic relationships. Such characterization would enable the prediction of ligand off-target effects caused by lack of ligand selectivity and the repurposing of known compounds against alternative targets. This is particularly relevant in the case of orphan targets with unreported inhibitors. Here, we first perform a systematic study of binding modes of cofactor and substrate bound ligands with all available SET domain-containing PKMTs. Protein ligand interaction fingerprints were applied to identify conserved hot spots and contact-specific residues across subfamilies at each binding site; a relevant analysis for guiding the design of novel, selective compounds. Then, a recently described methodology (GPCR-CoINPocket) that incorporates ligand contact information into classical alignment-based comparisons was applied to the entire family of 50 SET-containing proteins to devise pharmacological similarities between them. The main advantage of this approach is that it is not restricted to proteins for which crystallographic data with bound ligands is available. The resulting family organization from the separate analysis of both sites (cofactor and substrate) was retrospectively and prospectively validated. Of note, three hits (inhibition > 50% at 10 µM) were identified for the orphan NSD1.


Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage.

  • Vasudeva Ginjala‎ et al.
  • Scientific reports‎
  • 2017‎

Upon induction of DNA breaks, ATM activation leads to a cascade of local chromatin modifications that promote efficient recruitment of DNA repair proteins. Errors in this DNA repair pathway lead to genomic instability and cancer predisposition. Here, we show that the protein lysine methyltransferase G9a (also known as EHMT2) and GLP1 (also known as EHMT1) are critical components of the DNA repair pathway. G9a and GLP1 rapidly localizes to DNA breaks, with GLP1 localization being dependent on G9a. ATM phosphorylation of G9a on serine 569 is required for its recruitment to DNA breaks. G9a catalytic activity is required for the early recruitment of DNA repair factors including 53BP and BRCA1 to DNA breaks. Inhibition of G9a catalytic activity disrupts DNA repair pathways and increases sensitivity to ionizing radiation. Thus, G9a is a potential therapeutic target in the DNA repair pathway.


Protein Arginine N-methyltransferases 5 and 7 Promote HIV-1 Production.

  • Hironobu Murakami‎ et al.
  • Viruses‎
  • 2020‎

Current therapies for human immunodeficiency virus type 1 (HIV-1) do not completely eliminate viral reservoirs in cells, such as macrophages. The HIV-1 accessory protein viral protein R (Vpr) promotes virus production in macrophages, and the maintenance of Vpr is essential for HIV-1 replication in these reservoir cells. We identified two novel Vpr-binding proteins, i.e., protein arginine N-methyltransferases (PRMTs) 5 and 7, using human monocyte-derived macrophages (MDMs). Both proteins found to be important for prevention of Vpr degradation by the proteasome; in the context of PRMT5 and PRMT7 knockdowns, degradation of Vpr could be prevented using a proteasome inhibitor. In MDMs infected with a wild-type strain, knockdown of PRMT5/PRMT7 and low expression of PRMT5 resulted in inefficient virus production like Vpr-deficient strain infections. Thus, our findings suggest that PRMT5 and PRMT7 support HIV-1 replication via maintenance of Vpr protein stability.


A chemical biology toolbox to study protein methyltransferases and epigenetic signaling.

  • Sebastian Scheer‎ et al.
  • Nature communications‎
  • 2019‎

Protein methyltransferases (PMTs) comprise a major class of epigenetic regulatory enzymes with therapeutic relevance. Here we present a collection of chemical probes and associated reagents and data to elucidate the function of human and murine PMTs in cellular studies. Our collection provides inhibitors and antagonists that together modulate most of the key regulatory methylation marks on histones H3 and H4, providing an important resource for modulating cellular epigenomes. We describe a comprehensive and comparative characterization of the probe collection with respect to their potency, selectivity, and mode of inhibition. We demonstrate the utility of this collection in CD4+ T cell differentiation assays revealing the potential of individual probes to alter multiple T cell subpopulations which may have implications for T cell-mediated processes such as inflammation and immuno-oncology. In particular, we demonstrate a role for DOT1L in limiting Th1 cell differentiation and maintaining lineage integrity. This chemical probe collection and associated data form a resource for the study of methylation-mediated signaling in epigenetics, inflammation and beyond.


Human protein arginine methyltransferases (PRMTs) can be optimally active under nonphysiological conditions.

  • Troy L Lowe‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Protein arginine methylation is involved in many biological processes and can be enhanced in cancer. In mammals, these reactions are catalyzed on multiple substrates by a family of nine protein arginine methyltransferases (PRMTs). However, conditions that may regulate the activity of each enzyme and that may help us understand the physiological role of PRMTs have not been fully established. Previous studies had suggested unexpected effects of temperature and ionic strength on PRMT7 activity. Here we examine in detail the effects of temperature, pH, and ionic strength on recombinant human PRMT1, PRMT5, and PRMT7. We confirmed the unusual temperature dependence of PRMT7, where optimal activity was observed at 15 °C. On the other hand, we found that PRMT1 and PRMT5 are most active near physiological temperatures of 37 °C. However, we showed all three enzymes still have significant activity at 0 °C. Furthermore, we determined that PRMT1 is most active at a pH of about 7.7, while PRMT5 activity is not dependent on pH in the range of 6.5 to 8.5. Significantly, PRMT7 is most active at an alkaline pH of 8.5 but shows little activity at the physiological intracellular pH of about 7.2. We also detected decreased activity at physiological salt conditions for PRMT1, PRMT5, and PRMT7. We demonstrate that the loss of activity is due to the increasing ionic strength. Taken together, these results open the possibility that PRMTs respond in cells undergoing temperature, salt, or pH stress and demonstrate the potential for in vivo regulation of protein arginine methylation.


Dietary Flavones as Dual Inhibitors of DNA Methyltransferases and Histone Methyltransferases.

  • Rajnee Kanwal‎ et al.
  • PloS one‎
  • 2016‎

Methylation of DNA and histone proteins are mutually involved in the epigenetic regulation of gene expression mediated by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs). DNMTs methylate cytosine residues within gene promoters, whereas HMTs catalyze the transfer of methyl groups to lysine and arginine residues of histone proteins, thus causing chromatin condensation and transcriptional repression, which play an important role in the pathogenesis of cancer. The potential reversibility of epigenetic alterations has encouraged the development of dual pharmacologic inhibitors of DNA and histone methylation as anticancer therapeutics. Dietary flavones can affect epigenetic modifications that accumulate over time and have shown anticancer properties, which are undefined. Through DNA binding and in silico protein-ligand docking studies with plant flavones viz. Apigenin, Chrysin and Luteolin, the effect of flavones on DNA and histone methylation was assessed. Spectroscopic analysis of flavones with calf-thymus DNA revealed intercalation as the dominant binding mode, with specific binding to a GC-rich sequence in the DNA duplex. A virtual screening approach using a model of the catalytic site of DNMT and EZH2 demonstrated that plant flavones are tethered at both ends inside the catalytic pocket of DNMT and EZH2 by means of hydrogen bonding. Epigenetic studies performed with flavones exhibited a decrease in DNMT enzyme activity and a reversal of the hypermethylation of cytosine bases in the DNA and prevented cytosine methylation in the GC-rich promoter sequence incubated with the M.SssI enzyme. Furthermore, a marked decrease in HMT activity and a decrease in EZH2 protein expression and trimethylation of H3K27 were noted in histones isolated from cancer cells treated with plant flavones. Our results suggest that dietary flavones can alter DNMT and HMT activities and the methylation of DNA and histone proteins that regulate epigenetic modifications, thus providing a significant anticancer effect by altering epigenetic processes involved in the development of cancer.


Approaches and Guidelines for the Identification of Novel Substrates of Protein Lysine Methyltransferases.

  • Srikanth Kudithipudi‎ et al.
  • Cell chemical biology‎
  • 2016‎

Protein lysine methylation is emerging as a general post-translational modification (PTM) with essential functions regulating protein stability, activity, and protein-protein interactions. One of the outstanding challenges in this field is linking protein lysine methyltransferases (PKMTs) with specific substrates and lysine methylation events in a systematic manner. Inability to validate reported PKMT substrates delayed progress in the field and cast unnecessary doubt about protein lysine methylation as a truly general PTM. Here, we aim to provide a concise guide to help avoid some of the most common pitfalls in studies searching for new PKMT substrates and propose a set of seven basic biochemical rules: (1) include positive controls; (2) use target lysine mutations of substrate proteins as negative controls; (3) use inactive enzyme variants as negative controls; (4) report quantitative methylation data; (5) consider PKMT specificity; (6) validate methyl lysine antibodies; and (7) connect cellular and in vitro results. We explain the logic behind them and discuss how they should be implemented in the experimental work.


Cingulate protein arginine methyltransferases 1 regulates peripheral hypersensitivity via fragile X messenger ribonucleoprotein.

  • Cheng Wu‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2023‎

The deficit of fragile X messenger ribonucleoprotein (FMRP) leads to intellectual disability in human and animal models, which also leads to desensitization of pain after nerve injury. Recently, it was shown that the protein arginine methyltransferases 1 (PRMT1) regulates the phase separation of FMRP. However, the role of PRMT1 in pain regulation has been less investigated. Here we showed that the downregulation of PRMT1 in the anterior cingulate cortex (ACC) contributes to the development of peripheral pain hypersensitivity. We observed that the peripheral nerve injury decreased the expression of PRMT1 in the ACC; knockdown of the PRMT1 via shRNA in the ACC decreased the paw withdrawal thresholds (PWTs) of naïve mice. Moreover, the deficits of FMRP abolished the effects of PRMT1 on pain sensation. Furthermore, overexpression of PRMT1 in the ACC increased the PWTs of mice with nerve injury. These observations indicate that the downregulation of cingulate PRMT1 was necessary and sufficient to develop peripheral hypersensitivity after nerve injury. Thus, we provided evidence that PRMT1 is vital in regulating peripheral pain hypersensitivity after nerve injury via the FMRP.


Methyltransferases of Riboviria.

  • Arcady Mushegian‎
  • Biomolecules‎
  • 2022‎

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded β-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein.

  • Dominique Liger‎ et al.
  • Nucleic acids research‎
  • 2011‎

Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.


Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases.

  • Maxim I Maron‎ et al.
  • iScience‎
  • 2021‎

Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.


The Protein Arginine Methyltransferases 1 and 5 affect Myc properties in glioblastoma stem cells.

  • Annarita Favia‎ et al.
  • Scientific reports‎
  • 2019‎

Protein Arginine (R) methylation is the most common post-translational methylation in mammalian cells. Protein Arginine Methyltransferases (PRMT) 1 and 5 dimethylate their substrates on R residues, asymmetrically and symmetrically, respectively. They are ubiquitously expressed and play fundamental roles in tumour malignancies, including glioblastoma multiforme (GBM) which presents largely deregulated Myc activity. Previously, we demonstrated that PRMT5 associates with Myc in GBM cells, modulating, at least in part, its transcriptional properties. Here we show that Myc/PRMT5 protein complex includes PRMT1, in both HEK293T and glioblastoma stem cells (GSCs). We demonstrate that Myc is both asymmetrically and symmetrically dimethylated by PRMT1 and PRMT5, respectively, and that these modifications differentially regulate its stability. Moreover, we show that the ratio between symmetrically and asymmetrically dimethylated Myc changes in GSCs grown in stem versus differentiating conditions. Finally, both PRMT1 and PRMT5 activity modulate Myc binding at its specific target promoters. To our knowledge, this is the first work reporting R asymmetrical and symmetrical dimethylation as novel Myc post-translational modifications, with different functional properties. This opens a completely unexplored field of investigation in Myc biology and suggests symmetrically dimethylated Myc species as novel diagnostic and prognostic markers and druggable therapeutic targets for GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: