Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 558 papers

Myeloid cell expressed proprotein convertase FURIN attenuates inflammation.

  • Zuzet Martinez Cordova‎ et al.
  • Oncotarget‎
  • 2016‎

The proprotein convertase enzyme FURIN processes immature pro-proteins into functional end- products. FURIN is upregulated in activated immune cells and it regulates T-cell dependent peripheral tolerance and the Th1/Th2 balance. FURIN also promotes the infectivity of pathogens by activating bacterial toxins and by processing viral proteins. Here, we evaluated the role of FURIN in LysM+ myeloid cells in vivo. Mice with a conditional deletion of FURIN in their myeloid cells (LysMCre-fur(fl/fl)) were healthy and showed unchanged proportions of neutrophils and macrophages. Instead, LysMCre-fur(fl/fl) mice had elevated serum IL-1β levels and reduced numbers of splenocytes. An LPS injection resulted in accelerated mortality, elevated serum pro-inflammatory cytokines and upregulated numbers of pro-inflammatory macrophages. A genome-wide gene expression analysis revealed the overexpression of several pro-inflammatory genes in resting FURIN-deficient macrophages. Moreover, FURIN inhibited Nos2 and promoted the expression of Arg1, which implies that FURIN regulates the M1/M2-type macrophage balance. FURIN was required for the normal production of the bioactive TGF-β1 cytokine, but it inhibited the maturation of the inflammation-provoking TACE and Caspase-1 enzymes. In conclusion, FURIN has an anti-inflammatory function in LysM+ myeloid cells in vivo.


Diversity in Proprotein Convertase Reactivity among Human Papillomavirus Types.

  • Gonzalo Izaguirre‎ et al.
  • Viruses‎
  • 2023‎

The cleavage of viral surface proteins by furin is associated with some viruses' high virulence and infectivity. The human papillomavirus (HPV) requires the proteolytic processing of its capsid proteins for activation before entry. Variability in reactivity with furin and other proprotein convertases (PCs) among HPV types was investigated. HPV16, the most prevalent and carcinogenic HPV type, reacted with PCs with the broadest selectivity compared to other types in reactions of pseudoviral particles with the recombinant PCs, furin, PC4, PC5, PACE4, and PC7. Proteolytic preactivation was assessed using a well-established entry assay into PC-inhibited cells based on the green fluorescent protein as a reporter. The inhibition of the target cell PC activity with serpin-based PC-selective inhibitors also showed a diversity of PC selectivity among HPV types. HPV16 reacted with furin at the highest rate compared to the other types in time-dependent preactivation reactions and produced the highest entry values standardized to pseudoviral particle concentration. The predominant expression of furin in keratinocytes and the high reactivity of HPV16 with this enzyme highlight the importance of selectively targeting furin as a potential antiviral therapeutic approach.


OFF-State-Specific Inhibition of the Proprotein Convertase Furin.

  • Sven O Dahms‎ et al.
  • ACS chemical biology‎
  • 2021‎

The pro-protein convertase furin is a highly specific serine protease involved in the proteolytic maturation of many proteins in the secretory pathway. It also activates surface proteins of many viruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furin inhibitors effectively suppress viral replication and thus are promising antiviral therapeutics with broad application potential. Polybasic substrate-like ligands typically trigger conformational changes shifting furin's active site cleft from the OFF-state to the ON-state. Here, we solved the X-ray structures of furin in complex with four different arginine mimetic compounds with reduced basicity. These guanylhydrazone-based inhibitor complexes showed for the first time an active site-directed binding mode to furin's OFF-state conformation. The compounds undergo unique interactions within the S1 pocket, largely different compared to substrate-like ligands. A second binding site was identified at the S4/S5 pocket of furin. Crystallography-based titration experiments confirmed the S1 site as the primary binding pocket. We also tested the proprotein convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found an up to 7-fold lower potency for PC7. Interestingly, the observed differences in the Ki values correlated with the sequence conservation of the PCs at the allosteric sodium binding site. Therefore, OFF-state-specific targeting of furin can serve as a valuable strategy for structure-based development of PC-selective small-molecule inhibitors.


An atypical proprotein convertase in Giardia lamblia differentiation.

  • B J Davids‎ et al.
  • Molecular and biochemical parasitology‎
  • 2011‎

Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation.


Nodal signaling range is regulated by proprotein convertase-mediated maturation.

  • Federico Tessadori‎ et al.
  • Developmental cell‎
  • 2015‎

Tissue patterning is established by extracellular growth factors or morphogens. Although different theoretical models explaining specific patterns have been proposed, our understanding of tissue pattern establishment in vivo remains limited. In many animal species, left-right patterning is governed by a reaction-diffusion system relying on the different diffusivity of an activator, Nodal, and an inhibitor, Lefty. In a genetic screen, we identified a zebrafish loss-of-function mutant for the proprotein convertase FurinA. Embryological and biochemical experiments demonstrate that cleavage of the Nodal-related Spaw proprotein into a mature form by FurinA is required for Spaw gradient formation and activation of Nodal signaling. We demonstrate that FurinA is required cell-autonomously for the long-range signaling activity of Spaw and no other Nodal-related factors. Combined in silico and in vivo approaches support a model in which FurinA controls the signaling range of Spaw by cleaving its proprotein into a mature, extracellular form, consequently regulating left-right patterning.


Small molecule proprotein convertase inhibitors for inhibition of embryo implantation.

  • Huiting Ho‎ et al.
  • PloS one‎
  • 2013‎

Uterine proprotein convertase (PC) 6 plays a critical role in embryo implantation and is pivotal for pregnancy establishment. Inhibition of PC6 may provide a novel approach for the development of non-hormonal and female-controlled contraceptives. We investigated a class of five synthetic non-peptidic small molecule compounds that were previously reported as potent inhibitors of furin, another PC member. We examined (i) the potency of these compounds in inhibiting PC6 activity in vitro; (ii) their binding modes in the PC6 active site in silico; (iii) their efficacy in inhibiting PC6-dependent cellular processes essential for embryo implantation using human cell-based models. All five compounds showed potent inhibition of PC6 activity in vitro, and in silico docking demonstrated that these inhibitors could adopt a similar binding mode in the PC6 active site. However, when these compounds were tested for their inhibition of decidualization of primary human endometrial stromal cells, a PC6-dependent cellular process critical for embryo implantation, only one (compound 1o) showed potent inhibition. The lack of activity in the cell-based assay may reflect the inability of the compounds to penetrate the cell membrane. Because compound's lipophilicity is linked to cell penetration, a measurement of lipophilicity (logP) was calculated for each compound. Compound 1o is unique as it appears the most lipophilic among the five compounds. Compound 1o also inhibited another crucial PC6-dependent process, the attachment of human trophoblast spheroids to endometrial epithelial cells (a model for human embryo attachment). We thus identified compound 1o as a potent small molecule PC6 inhibitor with pharmaceutical potential to inhibit embryo implantation. Our findings also highlight that human cell-based functional models are vital to complement the biochemical and in silico analyses in the selection of promising drug candidates. Further investigations for compound 1o are warranted in animal models to test its utility as an implantation-inhibiting contraceptive drug.


Arenavirus envelope glycoproteins mimic autoprocessing sites of the cellular proprotein convertase subtilisin kexin isozyme-1/site-1 protease.

  • Antonella Pasquato‎ et al.
  • Virology‎
  • 2011‎

A crucial step in the arenavirus life cycle is the proteolytic processing of the viral envelope glycoprotein precursor (GPC) by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we conducted a systematic and quantitative analysis of SKI-1/S1P processing of peptides derived from the recognition sites of GPCs of different Old World and New World arenaviruses. We found that SKI-1/S1P showed a strong preference for arenaviral sequences resembling its autoprocessing sites, which are recurrent motifs in arenaviral GPCs. The African arenaviruses Lassa, Mobala, and Mopeia resemble the SKI-1/S1P autoprocessing C-site, whereas sequences derived from Clade B New World viruses Junin and Tacaribe have similarities to the autoprocessing B-site. In contrast, analogous peptides derived from cellular SKI-1/S1P substrates were remarkably poor substrates. The data suggest that arenavirus GPCs evolved to mimic SKI-1/S1P autoprocessing sites, likely ensuring efficient cleavage and perhaps avoiding competition with SKI-1/S1P's cellular substrates.


The proprotein convertase furin is required for trophoblast syncytialization.

  • Z Zhou‎ et al.
  • Cell death & disease‎
  • 2013‎

The multinucleated syncytial trophoblast, which forms the outermost layer of the placenta and serves multiple functions, is differentiated from and maintained by cytotrophoblast cell fusion. Deficiencies in syncytial trophoblast differentiation or maintenance likely contribute to intrauterine growth restriction and pre-eclampsia, two common gestational diseases. The cellular and molecular mechanisms governing trophoblast syncytialization are poorly understood. We report here that the proprotein convertase furin is highly expressed in syncytial trophoblast in the first trimester human placentas, and expression of furin in the syncytiotrophoblast is significantly lower in the placentas from pre-eclamptic patients as compared with their gestational age-matched control placentas. Using multiple experimental models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured cytotrophoblast cells or placental explants, we demonstrate that cytotrophoblast cell fusion and syncytialization are accompanied by furin expression. Furin-specific siRNAs or inhibitors inhibit cell fusion in BeWo cells, as well as trophoblast syncytialization in human placental explants. Furthermore, type 1 IGF receptor (IGF1R) is indicated in this study as a substrate of furin, and processing of IGF1R by furin is an essential mechanism for syncytialization. Finally, using lentivirus-mediated RNAi targeting to mouse trophectoderm, we demonstrate that furin function is required for the development of syncytiotrophoblast structure in the labyrinth layer, as well as for normal embryonic development.


The proprotein convertase KPC-1/furin controls branching and self-avoidance of sensory dendrites in Caenorhabditis elegans.

  • Yehuda Salzberg‎ et al.
  • PLoS genetics‎
  • 2014‎

Animals sample their environment through sensory neurons with often elaborately branched endings named dendritic arbors. In a genetic screen for genes involved in the development of the highly arborized somatosensory PVD neuron in C. elegans, we have identified mutations in kpc-1, which encodes the homolog of the proprotein convertase furin. We show that kpc-1/furin is necessary to promote the formation of higher order dendritic branches in PVD and to ensure self-avoidance of sister branches, but is likely not required during maintenance of dendritic arbors. A reporter for kpc-1/furin is expressed in neurons (including PVD) and kpc-1/furin can function cell-autonomously in PVD neurons to control patterning of dendritic arbors. Moreover, we show that kpc-1/furin also regulates the development of other neurons in all major neuronal classes in C. elegans, including aspects of branching and extension of neurites as well as cell positioning. Our data suggest that these developmental functions require proteolytic activity of KPC-1/furin. Recently, the skin-derived MNR-1/menorin and the neural cell adhesion molecule SAX-7/L1CAM have been shown to act as a tripartite complex with the leucine rich transmembrane receptor DMA-1 on PVD mechanosensory to orchestrate the patterning of dendritic branches. Genetic analyses show that kpc-1/furin functions in a pathway with MNR-1/menorin, SAX-7/L1CAM and DMA-1 to control dendritic branch formation and extension of PVD neurons. We propose that KPC-1/furin acts in concert with the 'menorin' pathway to control branching and growth of somatosensory dendrites in PVD.


The proprotein convertase SKI-1/S1P is a critical host factor for Nairobi sheep disease virus infectivity.

  • Caroline Bost‎ et al.
  • Virus research‎
  • 2023‎

Nairobi sheep disease virus (NSDV) belongs to the Orthonairovirus genus in the Bunyavirales order and is genetically related to human-pathogenic Crimean-Congo hemorrhagic fever virus (CCHFV). NSDV is a zoonotic pathogen transmitted by ticks and primarily affects naïve small ruminants in which infection leads to severe and often fatal hemorrhagic gastroenteritis. Despite its veterinary importance and the striking similarities in the clinical picture between NSDV-infected ruminants and CCHFV patients, the molecular pathogenesis of NSDV and its interactions with the host cell are largely unknown. Here, we identify the membrane-bound proprotein convertase site-1 protease (S1P), also known as subtilisin/kexin-isozyme-1 (SKI-1), as a host factor affecting NSDV infectivity. Absence of S1P in SRD-12B cells, a clonal CHO-K1 cell variant with a genetic defect in the S1P gene (MBTPS1), results in significantly decreased NSDV infectivity while transient complementation of SKI-1/S1P rescues NSDV infection. SKI-1/S1P is dispensable for virus uptake but critically required for production of infectious virus progeny. Moreover, we provide evidence that SKI-1/S1P is involved in the posttranslational processing of the NSDV glycoprotein precursor. Our results demonstrate the role of SKI-1/S1P in the virus life cycle of NSDV and suggest that this protease is a common host factor for orthonairoviruses and may thus represent a promising broadly-effective, indirect antiviral target.


Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside.

  • Xuhui Bao‎ et al.
  • Signal transduction and targeted therapy‎
  • 2024‎

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.


Curcumin affects proprotein convertase activity: elucidation of the molecular and subcellular mechanism.

  • Jingjing Zhu‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Proprotein convertases (PCs) form a group of serine endoproteases that are essential for the activation of proproteins into their active form. Some PCs have been proposed to be potential therapeutic targets for cancer intervention because elevated PC activity has been observed in many different cancer types and because many of the PC substrates, such as pro-IGF-1R, pro-TGF-beta, pro-VEGF, are involved in signaling pathways related to tumor development. Curcumin, reported to possess anticancer activity, also affects many of these pathways. We therefore investigated the effect of curcumin on PC activity. Our results show that curcumin inhibits PC activity in a cell lysate-based assay but not in vitro. PC zymogen maturation in the endoplasmic reticulum appears to be inhibited by curcumin. Treating cells with thapsigargin or cyclopiazonic acid, two structurally unrelated inhibitors of the sarco- and endoplasmic reticulum Ca(2+)ATPase (SERCA), also hampered both the PC zymogen maturation and the PC activity. Importantly, curcumin, like the SERCA inhibitors, impaired ATP-driven (45)Ca(2+) uptake in the endoplasmic reticulum. These results indicate that curcumin likely restrains PC activity by inhibiting SERCA-mediated Ca(2+)-uptake activity. Experiments in three colon cancer cell lines confirm that curcumin inhibits both the (45)Ca(2+) uptake and PC activity, notably the processing of pro-IGF-1R. Both curcumin and thapsigargin inhibit the anchorage-independent growth of these three colon carcinoma cell lines. In conclusion, our findings indicate that curcumin inhibits PC zymogen maturation and consequently PC activity and that its inhibitory effect on Ca(2+) uptake into the ER allows and is sufficient to explain this phenomenon.


Furin is the major proprotein convertase required for KISS1-to-Kisspeptin processing.

  • Sitaram Harihar‎ et al.
  • PloS one‎
  • 2014‎

KISS1 is a broadly functional secreted proprotein that is then processed into small peptides, termed kisspeptins (KP). Since sequence analysis showed cleavage at KR or RR dibasic sites of the nascent protein, it was hypothesized that enzyme(s) belonging to the proprotein convertase family of proteases process KISS1 to generate KP. To this end, cell lines over-expressing KISS1 were treated with the proprotein convertase inhibitors, Dec-RVKR-CMK and α1-PDX, and KISS1 processing was completely inhibited. To identify the specific enzyme(s) responsible for KISS1 processing, mRNA expression was systematically analyzed for six proprotein convertases found in secretory pathways. Consistent expression of the three proteases - furin, PCSK5 and PCSK7 - were potentially implicated in KISS1 processing. However, shRNA-mediated knockdown of furin - but not PCSK5 or PCSK7 - blocked KISS1 processing. Thus, furin appears to be the essential enzyme for the generation of kisspeptins.


Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst.

  • Daniel Mesnard‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Axis formation and allocation of pluripotent progenitor cells to the germ layers are governed by the TGF-β-related Nodal precursor and its secreted proprotein convertases (PCs) Furin and Pace4. However, when and where Furin and Pace4 first become active have not been determined. To study the distribution of PCs, we developed a novel cell surface-targeted fluorescent biosensor (cell surface-linked indicator of proteolysis [CLIP]). Live imaging of CLIP in wild-type and Furin- and Pace4-deficient embryonic stem cells and embryos revealed that Furin and Pace4 are already active at the blastocyst stage in the inner cell mass and can cleave membrane-bound substrate both cell autonomously and nonautonomously. CLIP was also cleaved in the epiblast of implanted embryos, in part by a novel activity in the uterus that is independent of zygotic Furin and Pace4, suggesting a role for maternal PCs during embryonic development. The unprecedented sensitivity and spatial resolution of CLIP opens exciting new possibilities to elucidate PC functions in vivo.


Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3.

  • Stephanie L Dillon‎ et al.
  • Journal of molecular biology‎
  • 2012‎

The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.


Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1).

  • Maryssa Canuel‎ et al.
  • PloS one‎
  • 2013‎

Elevated LDL-cholesterol (LDLc) levels are a major risk factor for cardiovascular disease and atherosclerosis. LDLc is cleared from circulation by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin 9 (PCSK9) enhances the degradation of the LDLR in endosomes/lysosomes, resulting in increased circulating LDLc. PCSK9 can also mediate the degradation of LDLR lacking its cytosolic tail, suggesting the presence of as yet undefined lysosomal-targeting factor(s). Herein, we confirm this, and also eliminate a role for the transmembrane-domain of the LDLR in mediating its PCSK9-induced internalization and degradation. Recent findings from our laboratory also suggest a role for PCSK9 in enhancing tumor metastasis. We show herein that while the LDLR is insensitive to PCSK9 in murine B16F1 melanoma cells, PCSK9 is able to induce degradation of the low density lipoprotein receptor-related protein 1 (LRP-1), suggesting distinct targeting mechanisms for these receptors. Furthermore, PCSK9 is still capable of acting upon the LDLR in CHO 13-5-1 cells lacking LRP-1. Conversely, PCSK9 also acts on LRP-1 in the absence of the LDLR in CHO-A7 cells, where re-introduction of the LDLR leads to reduced PCSK9-mediated degradation of LRP-1. Thus, while PCSK9 is capable of inducing degradation of LRP-1, the latter is not an essential factor for LDLR regulation, but the LDLR effectively competes with LRP-1 for PCSK9 activity. Identification of PCSK9 targets should allow a better understanding of the consequences of PCSK9 inhibition for lowering LDLc and tumor metastasis.


Identification of Novel Proteins Interacting with Proprotein Convertase Subtilisin/Kexin 9.

  • Quantil M Melendez‎ et al.
  • International journal of biomedical investigation‎
  • 2020‎

High levels of cholesterol, especially as low-density lipoprotein (LDL), are a well-known risk factor for atherosclerotic-related diseases. The key atherogenic property of LDL is its ability to form atherosclerotic plaque. Proprotein convertase subtilisin/kexin-9 (PCSK9) is an indirect regulator of plasma LDL levels by controlling the number of LDL receptor molecules expressed at the plasma membrane, especially in the liver. Herein, we performed a combination of affinity chromatography, mass spectrometry analysis and identification, and gene expression studies to identify proteins that interact with PCSK9. Through these studies, we identified three proteins, alpha-1-antitrypsin (A1AT), alpha-1-microglobulin/bikunin precursor (AMBP), and apolipoprotein H (APOH) expressed by C3A cells that interact with PCSK9. The expression levels of A1AT and APOH increased in cells treated with MITO+ medium, a condition previously shown to affect the function of PCSK9, as compared to treating with Regular (control) medium. However, AMBP expression did not change in response to the treatments. Additional studies are required to determine which of these proteins can modulate the expression/function of PCSK9. The identification of endogenous modulators of PCSK9's function could lead to the development of novel diagnostic tests or treatment options for patients suffering hypercholesterolemia in combination with other chronic metabolic diseases.


The proprotein convertase PC1/3 regulates TLR9 trafficking and the associated signaling pathways.

  • M Duhamel‎ et al.
  • Scientific reports‎
  • 2016‎

Endosomal TLR9 is considered as a potent anti-tumoral therapeutic target. Therefore, it is crucial to decipher the mechanisms controlling its trafficking since it determines TLR9 activation and signalling. At present, the scarcity of molecular information regarding the control of this trafficking and signalling is noticeable. We have recently demonstrated that in macrophages, proprotein convertase 1/3 (PC1/3) is a key regulator of TLR4 Myd88-dependent signalling. In the present study, we established that PC1/3 also regulates the endosomal TLR9. Under CpG-ODN challenge, we found that PC1/3 traffics rapidly to co-localize with TLR9 in CpG-ODN-containing endosomes with acidic pH. In PC1/3 knockdown macrophages, compartmentalization of TLR9 was altered and TLR9 clustered in multivesicular bodies (MVB) as demonstrated by co-localization with Rab7. This demonstrates that PC1/3 controls TLR9 trafficking. This clustering of TLR9 in MVB dampened the anti-inflammatory STAT3 signalling pathway while it promoted the pro-inflammatory NF-kB pathway. As a result, macrophages from PC1/3 KO mice and rat PC1/3-KD NR8383 macrophages secreted more pro-inflammatory cytokines such as TNF-α, IL6, IL1α and CXCL2. This is indicative of a M1 pro-inflammatory phenotype. Therefore, PC1/3 KD macrophages represent a relevant mean for cell therapy as "Trojan" macrophages.


Is there a link between proprotein convertase PC7 activity and human lipid homeostasis?

  • Johann Guillemot‎ et al.
  • FEBS open bio‎
  • 2014‎

A genome-wide association study suggested that a R504H mutation in the proprotein convertase PC7 is associated with increased circulating levels of HDL and reduced triglycerides in black Africans. Our present results show that PC7 and PC7-R504H exhibit similar processing of transferrin receptor-1, proSortilin, and apolipoprotein-F. Plasma analyses revealed no change in the lipid profiles, insulin or glucose of wild type and PC7 KO mice. Thus, the R504H mutation does not modify the proteolytic activity of PC7. The mechanisms behind the implication of PC7 in the regulation of human HDL, triglycerides and in modifying the levels of atherogenic small dense LDL remain to be elucidated.


Effect of cilostazol on plasma levels of proprotein convertase subtilisin/kexin type 9.

  • I-Chih Chen‎ et al.
  • Oncotarget‎
  • 2017‎

The protein complex proprotein convertase subtilisin/kexin type 9 (PCSK9) serves as an important target for the prevention and treatment of atherosclerosis and lipid homeostasis. This study investigated the effect of cilostazol on plasma PCSK9 concentrations. We performed a post hoc analysis of two prospective, double-blind, randomized controlled trials including 115 patients of whom 61 received cilostazol 200 mg/day and 54 received placebo for 12 weeks. Linear regression analysis was performed to determine the associations between several parameters and changes in PCSK9 levels. Use of cilostazol, but not placebo, significantly increased plasma PCSK9 concentrations, high-density lipoprotein cholesterol levels, and number of circulating endothelial progenitor cells (EPCs), and decreased triglyceride levels with a trend toward an increase in total cholesterol (TC) levels. A reduction in hemoglobin A1C and an increase in plasma vascular endothelial growth factor and adiponectin levels with cilostazol treatment were also found. Changes in the number of circulating EPCs were positively correlated and the TC concentrations were inversely correlated with changes in the PCSK9 levels. After adjusting for changes in levels of TC and numbers of circulating EPCs and history of metabolic syndrome, use of cilostazol remained independently associated with changes in plasma PCSK9 levels. In conclusion, cilostazol treatment was significantly and independently associated with an increase in plasma PCSK9 levels in patients with peripheral artery disease or at a high risk of cardiovascular disease regardless of background statin use and caused an improvement in some metabolic disorders and levels of vasculo-angiogenic biomarkers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: