Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 179 papers

Selective inhibition of prolyl 4-hydroxylases by bipyridinedicarboxylates.

  • James D Vasta‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2015‎

Collagen is the most abundant protein in animals. A variety of indications are associated with the overproduction of collagen, including fibrotic diseases and cancer metastasis. The stability of collagen relies on the posttranslational modification of proline residues to form (2S,4R)-4-hydroxyproline. This modification is catalyzed by collagen prolyl 4-hydroxylases (CP4Hs), which are Fe(II)- and α-ketoglutarate (AKG)-dependent dioxygenases located in the lumen of the endoplasmic reticulum. Human CP4Hs are validated targets for treatment of both fibrotic diseases and metastatic breast cancer. Herein, we report on 2,2'-bipyridinedicarboxylates as inhibitors of a human CP4H. Although most 2,2'-bipyridinedicarboxylates are capable of inhibition via iron sequestration, the 4,5'- and 5,5'-dicarboxylates were found to be potent competitive inhibitors of CP4H, and the 5,5'-dicarboxylate was selective in its inhibitory activity. Our findings clarify a strategy for developing CP4H inhibitors of clinical utility.


Expression of prolyl hydroxylases 2 and 3 in chick embryos.

  • Jake Barber‎ et al.
  • Gene expression patterns : GEP‎
  • 2016‎

Hypoxic cellular response is crucial for normal development as well as in pathological conditions in order to tolerate low oxygen. The response is mediated by Hypoxia Inducible Factors (HIFs), where the α-subunit of HIF is stabilised and able to function only in low oxygen. Prolyl hydroxylases (PHDs) are oxygen dependent dioxygenase enzymes that hydroxylate HIF-α leading to HIF degradation. Thus PHDs function as an oxygen sensor for the function of HIFs. Here we describe the mRNA expression pattern of PHDs in chick embryos. Up to embryonic day 2, PHDs are weak without specific localisation, whereas from day 3 localised expression was observed in the eye, branchial arches and dermomyotome. Later in the limb development PHDs were expressed in the perichondral mesenchyme, excluded from the developing limb cartilages.


Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses.

  • Moritz J Strowitzki‎ et al.
  • JCI insight‎
  • 2021‎

Anastomotic leakage (AL) accounts for a major part of in-house mortality in patients undergoing colorectal surgery. Local ischemia and abdominal sepsis are common risk factors contributing to AL and are characterized by upregulation of the hypoxia-inducible factor (HIF) pathway. The HIF pathway is critically regulated by HIF-prolyl hydroxylases (PHDs). Here, we investigated the significance of PHDs and the effects of pharmacologic PHD inhibition (PHI) during anastomotic healing. Ischemic or septic colonic anastomoses were created in mice by ligation of mesenteric vessels or lipopolysaccharide-induced abdominal sepsis, respectively. Genetic PHD deficiency (Phd1-/-, Phd2+/-, and Phd3-/-) or PHI were applied to manipulate PHD activity. Pharmacologic PHI and genetic PHD2 haplodeficiency (Phd2+/-) significantly improved healing of ischemic or septic colonic anastomoses, as indicated by increased bursting pressure and reduced AL rates. Only Phd2+/- (but not PHI or Phd1-/-) protected from sepsis-related mortality. Mechanistically, PHI and Phd2+/- induced immunomodulatory (M2) polarization of macrophages, resulting in increased collagen content and attenuated inflammation-driven immune cell recruitment. We conclude that PHI improves healing of colonic anastomoses in ischemic or septic conditions by Phd2+/--mediated M2 polarization of macrophages, conferring a favorable microenvironment for anastomotic healing. Patients with critically perfused colorectal anastomosis or abdominal sepsis could benefit from pharmacologic PHI.


Complex regulation of prolyl-4-hydroxylases impacts root hair expansion.

  • Silvia M Velasquez‎ et al.
  • Molecular plant‎
  • 2015‎

Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana.


Dynamics of Prolyl Hydroxylases Levels During Disease Progression in Experimental Colitis.

  • Hamid A Bakshi‎ et al.
  • Inflammation‎
  • 2019‎

Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.


A fluorescence polarization-based interaction assay for hypoxia-inducible factor prolyl hydroxylases.

  • Hyunju Cho‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor 1alpha (HIF-1alpha) plays a central role in regulating transcriptional responses to hypoxia. This process requires hydroxylation of specific prolines in HIF-1alpha by HIF prolyl hydroxylase domain (PHD)-containing enzymes, leading to its specific interactions with von Hippel-Lindau protein-Elongin B-Elongin C (VBC). Here we describe a straightforward approach to apply these interactions to measure PHD activities. Employing fluorescently labeled HIF-1alpha peptides containing hydroxyproline, we developed a quantitative method based on fluorescence polarization for a systematic evaluation of binding of hydroxylated HIF-1alpha to recombinant VBC. The method was then successfully utilized for measuring the activity of the truncated, purified PHD2. The applicability of the assay was further demonstrated by examining effects of various cofactors and inhibitors for PHD2. The developed homogeneous assay would provide a convenient way of probing the biochemical properties of the HIF-1alpha-VBC interaction and PHDs, and of screening modulators for the interaction as well as the enzyme.


Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases.

  • Rasheduzzaman Chowdhury‎ et al.
  • Nature communications‎
  • 2016‎

The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors.


Crystal structure and expression patterns of prolyl 4-hydroxylases from Phytophthora capsici.

  • Weiwei Song‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Prolyl 4-hydroxylases (P4Hs) are members of the Fe2+ and 2-oxoglutarate- dependent oxygenases family, which play central roles in the collagen stabilization, hypoxia sensing, and translational regulation in eukaryotes. Thus far, nothing is known about the role of P4Hs in development and pathogenesis in oomycetes. Here we show that the Phytophthora capsici genome contains five putative prolyl 4-hydroxylases. In mycelia, all P4Hs were downregulated in response to hypoxia, but the expression of PcP4H1 was most affected. Strikingly, Pc4H1 was upregulated more than 110 fold at the onset of infection, and Pc4H5 was upregulated seven fold, while the expression of other P4H's were unchanged. Similar to well-characterized P4H proteins, the crystallographic structure of PcP4H1 contains a highly conserved double-stranded β-helix core fold and catalytic residues. However, the binding affinity of 2-oxoglutarate to PcP4H1 is very low. The extended C-terminal α-helix bundle and longer β2-β3 disordered substrate binding loop may help in confirming the peptide target of this enzyme.


HIF-independent role of prolyl hydroxylases in the cellular response to amino acids.

  • R V Durán‎ et al.
  • Oncogene‎
  • 2013‎

Hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are α-ketoglutarate (αKG)-dependent dioxygenases that function as cellular oxygen sensors. However, PHD activity also depends on factors other than oxygen, especially αKG, a key metabolic compound closely linked to amino-acid metabolism. We examined the connection between amino-acid availability and PHD activity. We found that amino-acid starvation leads to αKG depletion and to PHD inactivation but not to HIF stabilization. Furthermore, pharmacologic or genetic inhibition of PHDs induced autophagy and prevented mammalian target of rapamycin complex 1 (mTORC1) activation by amino acids in a HIF-independent manner. Therefore, PHDs sense not only oxygen but also respond to amino acids, constituting a broad intracellular nutrient-sensing network.


The HIF-prolyl hydroxylases have distinct and nonredundant roles in colitis-associated cancer.

  • Kilian B Kennel‎ et al.
  • JCI insight‎
  • 2022‎

Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD). HIF-prolyl hydroxylases (PHD1, PHD2, and PHD3) control cellular adaptation to hypoxia and are considered promising therapeutic targets in IBD. However, their relevance in the pathogenesis of CAC remains elusive. We induced CAC in Phd1-/-, Phd2+/-, Phd3-/-, and WT mice with azoxymethane (AOM) and dextran sodium sulfate (DSS). Phd1-/- mice were protected against chronic colitis and displayed diminished CAC growth compared with WT mice. In Phd3-/- mice, colitis activity and CAC growth remained unaltered. In Phd2+/- mice, colitis activity was unaffected, but CAC growth was aggravated. Mechanistically, Phd2 deficiency (i) increased the number of tumor-associated macrophages in AOM/DSS-induced tumors, (ii) promoted the expression of EGFR ligand epiregulin in macrophages, and (iii) augmented the signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 signaling, which at least in part contributed to aggravated tumor cell proliferation in colitis-associated tumors. Consistently, Phd2 deficiency in hematopoietic (Vav:Cre-Phd2fl/fl) but not in intestinal epithelial cells (Villin:Cre-Phd2fl/fl) increased CAC growth. In conclusion, the 3 different PHD isoenzymes have distinct and nonredundant effects, promoting (PHD1), diminishing (PHD2), or neutral (PHD3), on CAC growth.


Isoform-specific Roles of Prolyl Hydroxylases in the Regulation of Pancreatic β-Cell Function.

  • Monica Hoang‎ et al.
  • Endocrinology‎
  • 2022‎

Pancreatic β-cells can secrete insulin via 2 pathways characterized as KATP channel -dependent and -independent. The KATP channel-independent pathway is characterized by a rise in several potential metabolic signaling molecules, including the NADPH/NADP+ ratio and α-ketoglutarate (αKG). Prolyl hydroxylases (PHDs), which belong to the αKG-dependent dioxygenase superfamily, are known to regulate the stability of hypoxia-inducible factor α. In the current study, we assess the role of PHDs in vivo using the pharmacological inhibitor dimethyloxalylglycine (DMOG) and generated β-cell-specific knockout (KO) mice for all 3 isoforms of PHD (β-PHD1 KO, β-PHD2 KO, and β-PHD3 KO mice). DMOG inhibited in vivo insulin secretion in response to glucose challenge and inhibited the first phase of insulin secretion but enhanced the second phase of insulin secretion in isolated islets. None of the β-PHD KO mice showed any significant in vivo defects associated with glucose tolerance and insulin resistance except for β-PHD2 KO mice which had significantly increased plasma insulin during a glucose challenge. Islets from both β-PHD1 KO and β-PHD3 KO had elevated β-cell apoptosis and reduced β-cell mass. Isolated islets from β-PHD1 KO and β-PHD3 KO had impaired glucose-stimulated insulin secretion and glucose-stimulated increases in the ATP/ADP and NADPH/NADP+ ratio. All 3 PHD isoforms are expressed in β-cells, with PHD3 showing the most distinct expression pattern. The lack of each PHD protein did not significantly impair in vivo glucose homeostasis. However, β-PHD1 KO and β-PHD3 KO mice had defective β-cell mass and islet insulin secretion, suggesting that these mice may be predisposed to developing diabetes.


Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates.

  • Matthew E Cockman‎ et al.
  • eLife‎
  • 2019‎

Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.


Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii.

  • Tongri Liu‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Inhibition or Deletion of Hydroxylases-Prolyl-4-Hydroxyases 3 Alleviates Lipopolysaccharide-induced Neuroinflammation and Neurobehavioral Deficiency.

  • Guoyao Ou‎ et al.
  • Neuroscience‎
  • 2022‎

It is well known that neuroinflammation plays a key role in neurodegenerative diseases. Hypoxia-inducible factor (HIF) and its hydroxylases-Prolyl-4-hydroxyases (PHDs) have been found to modulate the inflammatory processes. Here, the effects of PHDs enzyme onlipopolysaccharide-induced neuroinflammation and neurocognitive deficits were investigated. BV2 microglia cells were stimulated by LPS (1 μg/ml) as neuroinflammation model in vitro. Dimethyloxalylglycine (DMOG, 100 μM) and PHD3-siRNA were used to suppress the expression of PHD3. In vivo, mice received consecutive intraperitoneal injection of LPS (500 μg/kg) for 7 days, and intraperitoneal injection of DMOG (100 mg/kg) was applied 1 h before LPS at the same days. Several neurobehavioral tests (Open field, Novel object recognition and Morris water maze) were used to measure cognitive function. RT-qPCR and Western blotting were used to investigate the expression of inflammatory cytokines, HIF-PHDs protein. Metabolic reprogramming was measured by seahorse method. The results revealed that LPS induced neuroinflammation and PHD3 expression in vivo and vitro. DMOG and PHD3knockout decreased expression of inflammatory cytokines and improved the metabolic reprogramming caused by LPS treatment. Furthermore, pretreatment of DMOG reversed learning and memory deficits in systemic LPS-exposed mice through anti-neuroinflammation, which is independent of DMOG angiogenesis. These findings suggested that PHD3 may mediate LPS-induced microglial activation and neuroinflammation-associated neurobehavioral deficits.


Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis.

  • Ratnakar Tiwari‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. We found that post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial glycolytic transcriptional signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.


Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases.

  • Shoichiro Horita‎ et al.
  • Structure (London, England : 1993)‎
  • 2015‎

Post-translational ribosomal protein hydroxylation is catalyzed by 2-oxoglutarate (2OG) and ferrous iron dependent oxygenases, and occurs in prokaryotes and eukaryotes. OGFOD1 catalyzes trans-3 prolyl hydroxylation at Pro62 of the small ribosomal subunit protein uS12 (RPS23) and is conserved from yeasts to humans. We describe crystal structures of the human uS12 prolyl 3-hydroxylase (OGFOD1) and its homolog from Saccharomyces cerevisiae (Tpa1p): OGFOD1 in complex with the broad-spectrum 2OG oxygenase inhibitors; N-oxalylglycine (NOG) and pyridine-2,4-dicarboxylate (2,4-PDCA) to 2.1 and 2.6 Å resolution, respectively; and Tpa1p in complex with NOG, 2,4-PDCA, and 1-chloro-4-hydroxyisoquinoline-3-carbonylglycine (a more selective prolyl hydroxylase inhibitor) to 2.8, 1.9, and 1.9 Å resolution, respectively. Comparison of uS12 hydroxylase structures with those of other prolyl hydroxylases, including the human hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs), reveals differences between the prolyl 3- and prolyl 4-hydroxylase active sites, which can be exploited for developing selective inhibitors of the different subfamilies.


HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury.

  • Johannes Schödel‎ et al.
  • The American journal of pathology‎
  • 2009‎

Hypoxia-inducible transcription factors (HIFs) play important roles in the response of the kidney to systemic and regional hypoxia. Degradation of HIFs is mediated by three oxygen-dependent HIF-prolyl hydroxylases (PHDs), which have partially overlapping characteristics. Although PHD inhibitors, which can induce HIFs in the presence of oxygen, are already in clinical development, little is known about the expression and regulation of these enzymes in the kidney. Therefore, we investigated the expression levels of the three PHDs in both isolated tubular cells and rat kidneys. All three PHDs were present in the kidney and were expressed predominantly in three different cell populations: (a) in distal convoluted tubules and collecting ducts (PHD1,2,3), (b) in glomerular podocytes (PHD1,3), and (c) in interstitial fibroblasts (PHD1,3). Higher levels of PHDs were found in tubular segments of the inner medulla where oxygen tensions are known to be physiologically low. PHD expression levels were unchanged in HIF-positive tubular and interstitial cells after induction by systemic hypoxia. In rat models of acute renal injury, changes in PHD expression levels were variable; while cisplatin and ischemia/reperfusion led to significant decreases in PHD2 and 3 expression levels, no changes were seen in a model of contrast media-induced nephropathy. These results implicate the non-uniform expression of HIF-regulating enzymes that modify the hypoxic response in the kidney under both regional and temporal conditions.


Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases.

  • Mun Chiang Chan‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/β-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylases (PHD1-3) and an asparaginyl hydroxylase (factor-inhibiting HIF (FIH)). PHD catalysis regulates HIFα levels, and FIH catalysis regulates HIF activity. How differences in HIFα hydroxylation status relate to variations in the induction of specific HIF target gene transcription is unknown. We report studies using small molecule HIF hydroxylase inhibitors that investigate the extent to which HIF target gene expression is induced by PHD or FIH inhibition. The results reveal substantial differences in the role of prolyl and asparaginyl hydroxylation in regulating hypoxia-responsive genes in cells. PHD inhibitors with different structural scaffolds behave similarly. Under the tested conditions, a broad-spectrum 2-oxoglutarate dioxygenase inhibitor is a better mimic of the overall transcriptional response to hypoxia than the selective PHD inhibitors, consistent with an important role for FIH in the hypoxic transcriptional response. Indeed, combined application of selective PHD and FIH inhibitors resulted in the transcriptional induction of a subset of genes not fully responsive to PHD inhibition alone. Thus, for the therapeutic regulation of HIF target genes, it is important to consider both PHD and FIH activity, and in the case of some sets of target genes, simultaneous inhibition of the PHDs and FIH catalysis may be preferable.


The prolyl 3-hydroxylases P3H2 and P3H3 are novel targets for epigenetic silencing in breast cancer.

  • R Shah‎ et al.
  • British journal of cancer‎
  • 2009‎

Expression of P3H2 (Leprel1) and P3H3 (Leprel2) but not P3H1 (Leprecan) is down-regulated in breast cancer by aberrant CpG methylation in the 5' regulatory sequences of each gene. Methylation of P3H2 appears specific to breast cancer as no methylation was detected in a range of cell lines from other epithelial cancers or from primary brain tumours or malignant melanoma. Methylation in P3H2, but not P3H3, was strongly associated with oestrogen-receptor-positive breast cancers, whereas methylation in P3H3 was associated with higher tumour grade and Nottingham Prognostic Index. Ectopic expression of P3H2 and P3H3 in cell lines with silencing of the endogenous gene results in suppression of colony growth. This is the first demonstration of epigenetic inactivation of prolyl hydroxylases in human cancer, implying that this gene family represents a novel class of tumour suppressors. The restriction of silencing in P3H2 to breast carcinomas, and its association with oestrogen-receptor-positive cases, suggests that P3H2 may be a breast-cancer-specific tumour suppressor.


Inhibition of prolyl hydroxylases increases hepatic insulin and decreases glucagon sensitivity by an HIF-2α-dependent mechanism.

  • Matthew Riopel‎ et al.
  • Molecular metabolism‎
  • 2020‎

Recent evidence indicates that inhibition of prolyl hydroxylase domain (PHD) proteins can exert beneficial effects to improve metabolic abnormalities in mice and humans. However, the underlying mechanisms are not clearly understood. This study was designed to address this question.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: