Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Prolactin-Releasing Peptide Contributes to Stress-Related Mood Disorders and Inhibits Sleep/Mood Regulatory Melanin-Concentrating Hormone Neurons in Rats.

  • Szilvia Vas‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2023‎

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Origin of the prolactin-releasing hormone (PRLH) receptors: evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during vertebrate evolution.

  • Malin C Lagerström‎ et al.
  • Genomics‎
  • 2005‎

We present seven new vertebrate homologs of the prolactin-releasing hormone receptor (PRLHR) and show that these are found as two separate subtypes, PRLHR1 and PRLHR2. Analysis of a number of vertebrate sequences using phylogeny, pharmacology, and paralogon analysis indicates that the PRLHRs are likely to share a common ancestry with the neuropeptide Y (NPY) receptors. Moreover, a micromolar level of NPY was able to bind and inhibit completely the PRLH-evoked response in PRLHR1-expressing cells. We suggest that an ancestral PRLH peptide started coevolving with a redundant NPY binding receptor, which then became PRLHR, approximately 500 million years ago. The PRLHR1 subtype was shown to have a relatively high evolutionary rate compared to receptors with fixed peptide preference, which could indicate a drastic change in binding preference, thus supporting this hypothesis. This report suggests how gene duplication events can lead to novel peptide ligand/receptor interactions and hence spur the evolution of new physiological functions.


Immunohistochemical localization and ontogenic development of prolactin-releasing peptide in the brain of the ovoviviparous fish species Poecilia reticulata (guppy).

  • Masafumi Amano‎ et al.
  • Neuroscience letters‎
  • 2007‎

Immunohistochemical localization and ontogenic development of prolactin-releasing peptide (PrRP) in the brain of the ovoviviparous fish species Poecilia reticulata (guppy) were examined to gain a better understanding of this hormone in teleost fish. In adult guppies, PrRP-immunoreactive (ir) cell bodies were detected in the posterior part of the hypothalamus. In the pituitary, a small number of PrRP-ir fibers were observed adjacent to the prolactin cells, whereas numerous PrRP-ir fibers were detected not only in the hypothalamus but also widely throughout the brain. PrRP-ir cell bodies and prolactin cells were already detected on the birth day in the hypothalamus and pituitary, respectively. The number of PrRP-ir fibers in the brain increased as the fish developed. These results suggest that PrRP is involved in neuromodulation in the brain and that PrRP plays some physiological roles in the early development of the guppy.


The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus.

  • Garron T Dodd‎ et al.
  • Cell metabolism‎
  • 2014‎

Leptin is a critical regulator of metabolism, which acts on brain receptors (Lepr) to reduce energy intake and increase energy expenditure. Some of the cellular pathways mediating leptin's anorectic actions are identified, but those mediating the thermogenic effects have proven more difficult to decipher. We define a population of neurons in the dorsomedial hypothalamic nucleus (DMH) containing the RFamide PrRP, which is activated by leptin. Disruption of Lepr selectively in these cells blocks thermogenic responses to leptin and causes obesity. A separate population of leptin-insensitive PrRP neurons in the brainstem is required, instead, for the satiating actions of the gut-derived hormone cholecystokinin (CCK). Global deletion of PrRP (in a loxSTOPlox-PrRP mouse) results in obesity and attenuated responses to leptin and CCK. Cre-recombinase-mediated reactivation of PrRP in brainstem rescues the anorectic actions of CCK, but reactivation in the hypothalamus is required to re-establish the thermogenic effect of leptin.


TRH Regulates the Synthesis and Secretion of Prolactin in Rats with Adenohypophysis through the Differential Expression of miR-126a-5p.

  • Guo-Kun Zhao‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Prolactin (PRL) is an important hormone that is secreted by the pituitary gland and plays an important role in the growth, development and reproduction of organisms. Thyrotropin-releasing hormone (TRH) is a common prolactin-releasing factor that regulates the synthesis and secretion of prolactin. In recent studies, microRNAs (miRNAs) have been found to play a key role in the regulation of pituitary hormones. However, there is a lack of systematic studies on the regulatory role that TRH plays on the pituitary transcriptome, and the role of miRNAs in the regulation of PRL synthesis and secretion by TRH lacks experimental evidence. In this study, we first investigated the changes in PRL synthesis and secretion in the rat pituitary gland after TRH administration. The results of transcriptomic analysis after TRH treatment showed that 102 genes, including those that encode Nppc, Fgf1, PRL, Cd63, Npw, and Il23a, were upregulated, and 488 genes, including those that encode Lats1, Cacna2d1, Top2a, and Tfap2a, were downregulated. These genes are all involved in the regulation of prolactin expression. The gene expression of miR-126a-5p, which regulates the level of PRL in the pituitary gland, was screened by analysis prediction software and by a dual luciferase reporter system. The data presented in this study demonstrate that TRH can regulate prolactin synthesis and secretion through miR-126a-5p, thereby improving our understanding of the molecular mechanism of TRH-mediated PRL secretion and providing a theoretical basis for the role of miRNAs in regulating the secretion of pituitary hormones.


Inflammation and LPS-Binding Protein Enable the Stimulatory Effect of Endotoxin on Prolactin Secretion in the Ovine Anterior Pituitary: Ex Vivo Study.

  • Dorota Tomaszewska-Zaremba‎ et al.
  • Mediators of inflammation‎
  • 2018‎

Prolactin is a hormone that plays an important role in the regulation of many physiological processes including lactation, reproduction, fat metabolism, and immune response. The secretion of prolactin could be disturbed by an immune stress commonly accompanying infection. This study was designed to determine the influence of bacterial endotoxin-lipopolysaccharide (LPS)-on prolactin gene (PRL) expression and prolactin release from the ovine anterior pituitary (AP) explants collected from saline- and LPS-treated ewes in the follicular phase. The expressions of toll-like receptor 4 (TLR4) and proinflammatory cytokines interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α genes were also assayed. The results of the study showed that LPS stimulates prolactin secretion and IL-6 gene expression in the AP explants, but its action on lactotrophs depends on the immunological status of animal. It was demonstrated that an important role in enhancing the effect of LPS on the pituitary in the saline-treated ewes is played by LPS-binding protein (LBP)- "adapter molecule" for LPS binding to the cell surface receptor CD14 and then to TLR4. Also, it was found that bacterial endotoxin acting on the anterior pituitary cells may enhance prolactin secretion, and this effect of LPS could be mediated by IL-6 which is known as prolactin-releasing factor. Identification of the neuroendocrine and immune interactions in the regulation of prolactin secretion could be helpful in developing newer and more effective treatments for dysfunctions connected with disorders in this hormone secretion.


The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.

  • Michael A Cowley‎ et al.
  • Neuron‎
  • 2003‎

The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.


Identification and Functional Analysis of G Protein-Coupled Receptors in 20-Hydroxyecdysone Signaling From the Helicoverpa armigera Genome.

  • Yan-Li Li‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in animals and humans, which transmit various signals from the extracellular environment into cells. Studies have reported that several GPCRs transmit the same signal; however, the mechanism is unclear. In the present study, we identified all 122 classical GPCRs from the genome of Helicoverpa armigera, a lepidopteran pest species. Twenty-four GPCRs were identified as upregulated at the metamorphic stage by comparing the transcriptomes of the midgut at the metamorphic and feeding stages. Nine of them were confirmed to be upregulated at the metamorphic stage. RNA interference in larvae revealed the prolactin-releasing peptide receptor (PRRPR), smoothened (SMO), adipokinetic hormone receptor (AKHR), and 5-hydroxytryptamine receptor (HTR) are involved in steroid hormone 20-hydroxyecdysone (20E)-promoted pupation. Frizzled 7 (FZD7) is involved in growth, while tachykinin-like peptides receptor 86C (TKR86C) had no effect on growth and pupation. Via these GPCRs, 20E regulated the expression of different genes, respectively, including Pten (encoding phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase), FoxO (encoding forkhead box O), BrZ7 (encoding broad isoform Z7), Kr-h1 (encoding Krüppel homolog 1), Wnt (encoding Wingless/Integrated) and cMyc, with hormone receptor 3 (HHR3) as their common regulating target. PRRPR was identified as a new 20E cell membrane receptor using a binding assay. These data suggested that 20E, via different GPCRs, regulates different gene expression to integrate growth and development.


Functional Lactotrophs in Induced Adenohypophysis Differentiated From Human iPS Cells.

  • Natsuki Miyake‎ et al.
  • Endocrinology‎
  • 2022‎

Prolactin (PRL), a hormone involved in lactation, is mainly produced and secreted by the lactotrophs of the anterior pituitary (AP) gland. We previously reported a method to generate functional adrenocorticotropic hormone-producing cells by differentiating the AP and hypothalamus simultaneously from human induced pluripotent stem cells (iPSCs). However, PRL-producing cells in the induced AP have not been investigated. Here, we confirmed the presence of PRL-producing cells and evaluated their endocrine functions. We differentiated pituitary cells from human iPSCs using serum-free floating culture of embryoid-like aggregates with quick reaggregation (SFEB-q) method and evaluated the appearance and function of PRL-producing cells. Secretion of PRL from the differentiated aggregates was confirmed, which increased with further culture. Fluorescence immunostaining and immunoelectron microscopy revealed PRL-producing cells and PRL-positive secretory granules, respectively. PRL secretion was promoted by various prolactin secretagogues such as thyrotropin-releasing hormone, vasoactive intestinal peptide, and prolactin-releasing peptide, and inhibited by bromocriptine. Moreover, the presence of tyrosine hydroxylase-positive dopaminergic nerves in the hypothalamic tissue area around the center of the aggregates connecting to PRL-producing cells indicated the possibility of recapitulating PRL regulatory mechanisms through the hypothalamus. In conclusion, we generated pituitary lactotrophs from human iPSCs; these displayed similar secretory responsiveness as human pituitary cells in vivo. In the future, this is expected to be used as a model of human PRL-producing cells for various studies, such as drug discovery, prediction of side effects, and elucidation of tumorigenic mechanisms using disease-specific iPSCs. Furthermore, it may help to develop regenerative medicine for the pituitary gland.


Genome-wide detection of gene extinction in early mammalian evolution.

  • Shigehiro Kuraku‎ et al.
  • Genome biology and evolution‎
  • 2011‎

Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor ("PRLHR") gene families. Our findings highlight the potential of genome-wide gene phylogeny ("phylome") analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution.


Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control.

  • Yoshihiro Omori‎ et al.
  • PloS one‎
  • 2015‎

Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.


Sequential appetite suppression by oral and visceral feedback to the brainstem.

  • Truong Ly‎ et al.
  • Nature‎
  • 2023‎

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction.

  • Chuanhui Xia‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Prolactin-releasing peptide (PrRP), a sort of vital hypothalamic neuropeptide, has been found to exert an enormous function on the food intake of mammals. However, little is known about the functional role of PrRP in teleost. In the present study, two PrRP isoforms and four PrRP receptors were isolated from grass carp. Ligand-receptor selectivity displayed that PrRP1 preferentially binds with PrRP-R1a and PrRP-R1b, while PrRP-R2a and PrRP-R2b were special receptors for PrRP2. Tissue distribution indicated that both PrRPs and PrRP-Rs were highly expressed in the hypothalamus-pituitary-gonad axis and intestine, suggesting a latent function on food intake and reproduction. Using grass carp as a model, we found that food intake could significantly induce hypothalamus PrRP mRNA expression, which suggested that PrRP should be also an anorexigenic peptide in teleost. Interestingly, intraperitoneal (IP) injection of PrRPs could significantly induce serum luteinizing hormone (LH) secretion and pituitary LHβ and GtHα mRNA expression in grass carp. Moreover, using primary culture grass carp pituitary cells as a model, we further found that PrRPs could directly induce pituitary LH secretion and synthesis mediated by AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways. Finally, estrogen treatment of prepubertal fish elicited increases in PrRPs and PrPR receptors expression in primary cultured grass carp hypothalamus cells, which further confirmed that the PrRP/PrRPR system may participate in the neuroendocrine control of fish reproduction. These results, taken together, suggest that PrRPs might act as a coupling factor in feeding metabolism and reproductive activities in teleost.


Transcriptome analysis of ovarian tissues highlights genes controlling energy homeostasis and oxidative stress as potential drivers of heterosis for egg number and clutch size in crossbred laying hens.

  • Adamu Mani Isa‎ et al.
  • Poultry science‎
  • 2024‎

Heterosis is the major benefit of crossbreeding and has been exploited in laying hens breeding for a long time. This genetic phenomenon has been linked to various modes of nonadditive gene action. However, the molecular mechanism of heterosis for egg production in laying hens has not been fully elucidated. To fill this research gap, we sequenced mRNAs and lncRNAs of the ovary stroma containing prehierarchical follicles in White Leghorn, Rhode Island Red chickens as well as their reciprocal crossbreds that demonstrated heterosis for egg number and clutch size. We further delineated the modes of mRNAs and lncRNAs expression to identify their potential functions in the observed heterosis. Results showed that dominance was the principal mode of nonadditive expression exhibited by mRNAs and lncRNAs in the prehierarchical follicles of crossbred hens. Specifically, low-parent dominance was the main mode of mRNA expression, while high-parent dominance was the predominant mode of lncRNA expression. Important pathways enriched by genes that showed higher expression in crossbreds compared to either one or both parental lines were cell adhesion molecules, tyrosine and purine metabolism. In contrast, ECM-receptor interaction, focal adhesion, PPAR signaling, and ferroptosis were enriched in genes with lower expression in the crossbred. Protein network interaction identified nonadditively expressed genes including apolipoprotein B (APOB), transferrin, acyl-CoA synthetase medium-chain family member (APOBEC) 3, APOBEC1 complementation factor, and cathepsin S as hub genes. Among these potential hub genes, APOB was the only gene with underdominance expression common to the 2 reciprocal crossbred lines, and has been linked to oxidative stress. LncRNAs with nonadditive expression in the crossbred hens targeted natriuretic peptide receptor 1, epidermal differentiation protein beta, spermatogenesis-associated gene 22, sperm-associated antigen 16, melanocortin 2 receptor, dolichol kinase, glycine amiinotransferase, and prolactin releasing hormone receptor. In conclusion, genes with nonadditive expression in the crossbred may play crucial roles in follicle growth and atresia by improving follicle competence and increasing oxidative stress, respectively. These 2 phenomena could underpin heterosis for egg production in crossbred laying hens.


Illuminating G-Protein-Coupling Selectivity of GPCRs.

  • Asuka Inoue‎ et al.
  • Cell‎
  • 2019‎

Heterotrimetic G proteins consist of four subfamilies (Gs, Gi/o, Gq/11, and G12/13) that mediate signaling via G-protein-coupled receptors (GPCRs), principally by receptors binding Gα C termini. G-protein-coupling profiles govern GPCR-induced cellular responses, yet receptor sequence selectivity determinants remain elusive. Here, we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique Gα subunit C termini. For each receptor, we probed chimeric Gα subunit activation via a transforming growth factor-α (TGF-α) shedding response in HEK293 cells lacking endogenous Gq/11 and G12/13 proteins, and complemented G-protein-coupling profiles through a NanoBiT-G-protein dissociation assay. Interrogation of the dataset identified sequence-based coupling specificity features, inside and outside the transmembrane domain, which we used to develop a coupling predictor that outperforms previous methods. We used the predictor to engineer designer GPCRs selectively coupled to G12. This dataset of fine-tuned signaling mechanisms for diverse GPCRs is a valuable resource for research in GPCR signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: